2016 LCRWPG WATER PLAN

APPENDIX 5A

POTENTIALLY FEASIBLE WATER MANAGEMENT STRATEGIES

Table 5A-1: Region K Water Management Strategies Considered and Evaluated

Table 5A-2: Region K Potentially Feasible WMS Screening

Table 5A-1: Region K Water Management Strategies Considered and Evaluated

Every WUG Entity with an Iden	tified Need		,		WMSs REQU	IRED TO BE	CONSIDERE	D BY STATUI	TE							Additio	onal				
Water User Group Name	Maximum Need 2020- 2070 (af/yr)	Conservation	Drought Management	Reuse	Reallocation/ management of existing supplies	Conjunctive Use	Acquisition of available supplies	Development of new supplies	Development of regional water supply or regional management of water supply facilities	Voluntary transfer of water (incl. regional water banks, sales, leases, options, subordination agreements, and financing agreements)	Emergency transfer of water under Section 11.139	System optimization, subordination, leases, enhancement of yield, improvement of water quality	New SW	New GW	Brush control; precipitation enhancement	Desalination	Aquifer storage and recovery	Amendment of water rights/permits	Rainwater harvesting	other	other
Aqua WSC	26,269	PF	PF	nPF	nPF	nPF	PF	PF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Bastrop	6,390	PF	PF	PF	nPF	nPF	nPF	PF	nPF	PF	nPF	nPF	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	
Bastrop County WCID #2	644	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
County-Other, Bastrop	1,490	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Creedmoor-Maha WSC	609	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Elgin	4,124	nPF	PF	nPF	nPF	nPF	PF	PF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Smithville	721	PF	PF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Manufacturing, Bastrop	199	nPF	nPF	nPF	nPF	nPF	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Mining, Bastrop	7,843	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
County-Other, Blanco	55	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	
Johnson City	175	PF	PF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Bertram	358	PF	PF	nPF	nPF	nPF	PF	PF	PF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
County-Other, Burnet	460	PF	PF	nPF	nPF	nPF	nPF	PF	PF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Granite Shoals	306	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Horseshoe Bay	1,098	PF	PF	PF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Marble Falls	3,386	PF	PF	PF	nPF	nPF	nPF	nPF	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Meadowlakes	896	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Mining, Burnet	5,973	nPF	nPF	nPF	nPF	nPF	PF				nPF	nPF									
Columbus	163	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
County-Other, Colorado	226	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Irrigation, Colorado	58,954	PF	PF	nPF	nPF	nPF	PF	PF	PF	nPF	nPF	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	
County-Other, Fayette	639	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Schulenburg	267	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Manufacturing, Fayette	391	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Mining, Fayette	7,980	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Fradariskohura	222	IIPT DE	DE	nPF	nDE	nDE	nDE	nDE	nDE	nDE	nDE	nDE	nDE	nDE	nDE	nDE	nDE	IIPP DE	nDE	nDE	
Manufacturing Cillospie	626	nPF	nPF	nPF	nDF	nDF	DE	nPF	nDF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nDF	+
Austin	63 194	PE	PE	PE	nPE	nPF	PE	PE	nPE	PE	nPE	PE	III I'	PE	nPE	III 1 [.]	PE	nPE	PE	nPF	
Buda	6.088	PF	PF	PF	nPF	nPF	PF	PF	PF	PF	nPF	nPF	nPF	PF	nPF	PF	PF	nPF	nPF	nPF	
County-Other Hays	3 382	nPF	PF	nPF	nPF	nPF	PF	PF	PF	nPF	nPF	nPF	nPF	PF	nPF	PF	PF	nPF	nPF	nPF	
Dripping Springs	432	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Dripping Springs	126	PF	PF	nPF	nPF	nPF	nPF	PF	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	
Goforth SUD	48	nPF	PF	nPF	nPF	nPF					nPF	nPF									1
West Travis County PUA	13,460	PF	PF	nPF	nPF	nPF	nPF	PF	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	1
Mining, Hays	1,579	nPF	nPF	nPF	nPF	nPF	PF	PF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	
Llano	488	PF	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	
Irrigation, Matagorda	166,548	PF	PF	nPF	nPF	nPF	PF	PF	PF	nPF	nPF	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF	1
Steam-Electric, Matagorda	25,483	nPF	nPF	nPF	nPF	nPF	PF	PF	nPF	nPF	nPF	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	1
County-Other, Mills	29	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	1
Goldthwaite	339	PF	PF	nPF	nPF	nPF	PF	PF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	

Table 5A-1: Region K Water Management Strategies Considered and Evaluated

Number Number<	Every WUG Entity with an Iden	tified Need				WMSs REQU	IRED TO BE (CONSIDEREI	D BY STATU	ГЕ							Additi	onal				
Integrande Mole6646476	Water User Group Name	Maximum Need 2020- 2070 (af/yr)	Conservation	Drought Management	Reuse	Reallocation/ management of existing supplies	Conjunctive Use	Acquisition of available supplies	Development of new supplies	Development of regional water supply or regional management of water supply facilities	Voluntary transfer of water (incl. regional water banks, sales, leases, options, subordination agreements, and financing agreements)	Emergency transfer of water under Section 11.139	System optimization, subordination, leases, enhancement of yield, improvement of water quality	New SW	New GW	Brush control; precipitation enhancement	Desalination	Aquifer storage and recovery	Amendment of water rights/permits	Rainwater harvesting	other	other
Ambdo172175176 <th< td=""><td>Irrigation, Mills</td><td>605</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>PF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td>nPF</td><td></td></th<>	Irrigation, Mills	605	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
beckconstraint1.510 <td>San Saba</td> <td>152</td> <td>PF</td> <td>PF</td> <td>nPF</td> <td></td>	San Saba	152	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Image 1.5 1.7	Bee Cave Village	1,518	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Chale Pub1/161/170/17	Briarcliff Village	36	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Indication100107 <td>Cedar Park</td> <td>1,176</td> <td>PF</td> <td>PF</td> <td>nPF</td> <td>nPF</td> <td>nPF</td> <td></td> <td></td> <td></td> <td></td> <td>nPF</td> <td>nPF</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cedar Park	1,176	PF	PF	nPF	nPF	nPF					nPF	nPF									
Labord4.906.00	Jonestown	206	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Landar Landar Main M	Lakeway	4,503	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Locy 50 WG17187187187187187187187187187187187187187187187187Moor2.070PF<	Leander	4,937	nPF	nPF	nPF	nPF	nPF					nPF	nPF									
Manue	Loop 360 WSC	157	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Maximi Mode 3,788 0m ²	Manor	2,067	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Implement	Manvule WSC	3,/38	nPF	PF	nPF	nPF	nPF	PF	nPF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Indication14.916.9	Pjiugerville	21,081	PF	PF	PF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
(1) $(1$	Rollingwood	370	PE	PE	nPF	nPF	nPE	nPE	nPF	nPF	PF	nPF	nPE	nPF	nPF	nPF	nPF	nPF	nPE	nPF	nPF	
Matrix	Round Rock	330	PF	PF	nPF	nPF	nPF	III I	mı		PF	nPF	nPF		III I			mı	mı	III I		
1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Travis County MUD #4	710	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Image: Serie of the serie of	Travis County WCID #10	3,619	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Image: Constraint of the state of the sta	Travis County WCID #17	3,815	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Velocity660.FF	Travis County WCID #18	131	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	1
Messal Left	Volente	66	nPF	PF	nPF	nPF	nPF	nPF	PF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Search Lease21,530nPFnP	West Lake Hills	1,550	PF	PF	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF	nPF	
Image:	Steam-Electric, Travis	21,530	nPF	nPF	PF	nPF	nPF			1	nPF	PF			nPF	nPF	nPF	nPF	nPF	nPF		
Steam-Electric, Whatom 200 nPF n	Irrigation, Wharton	109,382	PF	PF	nPF	nPF	nPF	PF	PF	PF	nPF	PF	PF	nPF	nPF	nPF	PF	nPF	nPF	nPF		
	Steam-Electric, Wharton	200	nPF	nPF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	PF	nPF	nPF	nPF	nPF	nPF	nPF		

nPF = considered but determined 'not potentially feasible' (may include WMSs that were initially identified as potentially feasible)

PF = considered 'potentially feasible' and therefore evaluated

+

(all WMS evaluations shall be presented in the regional water plan including for WMSs considered potentially feasible but not recommended)

	West-11 0	Official and Dependential	Addressing	Tatal Otratam	A	0		din a	la lata	ah a a la			Matan	Screening Ma	atrix Factors (Positive (1), Ne	utral (0), Nega	tive (-1))	Incore to to		Tetal of	Our willing a Freedom and a large state	Quantified Amiguiture Immedia
Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Addressing a Need?	Cost (\$)	Annual Strategy Cost (\$)	Water (\$/ac-ft) (Max Sta Yield Dec ac-ft/yr)	ade Bas	in Inter Tra (Ye:	rbasin Cos insfer is/No)	t Yield Lo	ocation	Water Quality	and Natural Resources	Local Preference	Constraints	Water Resources	Impacts on Agricultural Resources	Impacts to Recreation	Impacts on Other Management Strategies	Screening Factors	Quantified Environmental Impacts	Quantified Agriculture impacts
1 Drought Management	Aqua WSC	Mandatory water use reduction by 15%	Yes	\$279,400	\$279,400	\$50	5,588 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
2 Drought Management	Bastrop	Mandatory water use reduction by 15%	Yes	\$62,400	\$62,400	\$50	1,248 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
3 Drought Management	BASTROP COUNTY WCID #2	Mandatory water use reduction by 5%	Yes	\$5,100	\$5,100	\$50	102 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
4 Drought Management	COUNTY-OTHER BASTROP COUNTY	Mandatory water use reduction by 15%	Yes	\$42,250	\$42,250	\$50	845 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
5 Drought Management	COUNTY-OTHER BLANCO COUNTY	Mandatory water use reduction by 15%	Yes	\$9,650	\$9,650	\$50	193 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
6 Drought Management	COUNTY-OTHER BURNET COUNTY	Mandatory water use reduction by 15%	Yes	\$35,550	\$35,550	\$50	711 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
7 Drought Management	COUNTY-OTHER COLORADO COUNTY	Mandatory water use reduction by 15%	Yes	\$12,250	\$12,250	\$50	245 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
8 Drought Management	COUNTY-OTHER FAYETTE COUNTY	Mandatory water use reduction by 15%	Yes	\$12,100	\$12,100	\$50	242 20	All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
9 Drought Management	COUNTY-OTHER GILLESPIE	Mandatory water use reduction by 15%	No	\$17,150	\$17,150	\$50	343 20	All 20	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
10 Drought Management	COUNTY-OTHER HAYS	Mandatory water use reduction by 15%	Yes	\$56.050	\$56.050	\$50	1.121 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
			N	¢4.550	£4.550	¢50		00.0.1	da Na					0	0				0				Neer
11 Drought Management	COUNTY-OTHER LLANO	Mandatory water use reduction by 5%	No	\$1,550	\$1,550	\$50	31 20 92 20	120 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
		Mandatory water use reduction by 5 %	110	φ4,130		\$50	05 20	120 741	110		0	1	U	0	0			0	0	0	5		
13 Drought Management	COUNTY-OTHER MILLS	Mandatory water use reduction by 20%	Yes	\$4,200	\$4,200	\$50	84 20	120 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
14 Drought Management	SABA CREEDMOOR-MAHA	Mandatory water use reduction by 15%	No	\$12,000	\$12,000	\$50	240 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
15 Drought Management	WSC	Mandatory water use reduction by 5%	Yes	\$2,550	\$2,550	\$50	51 20	120 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
16 Drought Management	ELGIN	Mandatory water use reduction by 15%	Yes	\$42,200	\$42,200	\$50	844 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
17 Drought Management	Smithville	Mandatory water use reduction by 15%	Yes	\$24,000	\$24,000	\$50	480 20	Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
18 Drought Management	BLANCO	Mandatory water use reduction by 25%	No	\$3,700	\$3,700	\$50	74 20	20 Guada	lupe No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
19 Drought Management	CANYON LAKE WSC	Mandatory water use reduction by 15%	Yes	\$1,350	\$1,350	\$50	27 20	20 Guada	lupe No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
20 Drought Management	JOHNSON CITY	Mandatory water use reduction by 20%	Yes	\$4,800	\$4,800	\$50	96 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
21 Drought Management	BERTRAM	Mandatory water use reduction by 15%	Yes	\$5,450	\$5,450	\$50	109 20	20 Brazos	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
22 Drought Management	BURNET	Mandatory water use reduction by 20%	No	\$32,900	\$32,900	\$50	658 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
23 Drought Management	CHISHOLM TRAIL SUD	Mandatory water use reduction by 15%	Yes	\$950	\$950	\$50	19 20	20 Brazos	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
24 Drought Management	COTTONWOOD SHORES	Mandatory water use reduction by 20%	No	\$4,000	\$4,000	\$50	80 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
25 Drought Management	GRANITE SHOALS	Mandatory water use reduction by 5%	Yes	\$2,850	\$2,850	\$50	57 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
26 Drought Management	HORSESHOE BAY	Mandatory water use reduction by 25%	Yes	\$49,700	\$49,700	\$50	994 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
27 Drought Management	KEMPNER WSC	Mandatory water use reduction by 15%	Yes	\$1,800	\$1,800	\$50	36 20	20 Brazos	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
28 Drought Management	KINGSLAND WSC	Mandatory water use reduction by 5%	No	\$200	\$200	\$50	4 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
29 Drought Management	MARBLE FALLS	Mandatory water use reduction by 20%	Yes	#VALUE!	#VALUE!	\$50	1277 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
30 Drought Management	MEADOWLAKES	Mandatory water use reduction by 20%	Yes	\$15,400	\$15,400	\$50	308 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
31 Drought Management	COLUMBUS	Mandatory water use reduction by 15%	Yes	\$9,850	\$9,850	\$50	197 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
32 Drought Management	EAGLE LAKE	Mandatory water use reduction by 15%	No	\$4,350	\$4,350	\$50	87 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
33 Drought Management	WEIMAR	Mandatory water use reduction by 15%	No	\$4,550	\$4,550	\$50	91 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
34 Drought Management	FAYETTE WSC	Mandatory water use reduction by 15%	No	\$7,600	\$7,600	\$50	152 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
35 Drought Management	FLATONIA	Mandatory water use reduction by 15%	No	\$3,400	\$3,400	\$50	68 20	20 All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
36 Drought Management	LA GRANGE	Mandatory water use reduction by 15%	No	\$8,700	\$8,700	\$50	174 20	20 Colora	do No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
37 Drought Management	SCHULENBERG	Mandatory water use reduction by 15%	Yes	\$7,500	\$7,500	\$50	150 20	Lavac:	a No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
38 Drought Management	EREDERICKSPURC	Mandatory water use reduction by 15%	Vac	\$20.450	\$20.450	\$00 \$50	600 00	20 Color-	do No			1	0	0	0			0	0		2	Import is policible	None
ວວ ມາບugnt Management	I NEDERICKOBUKG	imanuatory water use reduction by 15%	res	\$30,450	3∪ ,450	\$5U	009 20	Lolora	uu INO		U	I	U	U	U	1	1	U	U	U	3	nnpaci is negligible	
39 Drought Management	AUSTIN	Mandatory water use reduction by 10%	Yes	\$1,446,850	\$1,446,850	\$50	28,937 20	20 Colora	do No	1	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None

Water Management	Water User Group or	Strategy Description	Addressing	Total Strategy	Annual	Cost of	Max	Starting	Basin	Interbasin	Cost Vield		Water	Screening Ma	atrix Factors	(Positive (1), Ne	utral (0), Neg	ative (-1))	Impacts to	Impacts on	Total of	Quantified Environmental Impacts	Quantified Agriculture Impacts
Strategy	Wholesale Provider	Strategy Description	a Need?	Cost (\$)	Strategy Cost (\$)	Water (\$/ac-ft)	Yield (ac-ft/yr)	Decade	Dasin	Transfer (Yes/No)	COST TIER	Location	Quality	and Natural Resources	Preference	Constraints	Water Resources	Agricultural Resources	Recreation	Other Management Strategies	Screening Factors		duantined Agriculture impacts
40 Drought Management	Buda	Mandatory water use reduction by 10%	Yes	\$36,700	\$36,700	50 \$50	0 734	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
41 Drought Management	DRIPPING SPRINGS	Mandatory water use reduction by 20%	Yes	\$9,400	\$9,400	\$50	0 188	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
42 Drought Management	DRIPPING SPRINGS	Mandatory water use reduction by 20%	Vec	\$16 500	\$16.50	50	330	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
43 Drought Management	GOFORTH SUD	Mandatory water use reduction by 25%	Yes	\$5,300	\$5,300	5 \$50	0 106	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
	WEST TRAVIS COUNTY		~		6 000 000								_										
44 Drought Management	PUA	Mandatory water use reduction by 20%	res	\$206,000	\$206,000	3 \$50	J 4,120	2020	Colorado	NO	0	1	0	0	0	1	1	0	0	0	3		None
45 Drought Management	LLANO	Mandatory water use reduction by 15%	Yes	\$6,850	\$6,850	50 \$50	0 137	2020	Colorado N Brazos-	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
46 Drought Management	BAY CITY	Mandatory water use reduction by 20%	No	\$30,250	\$30,250	\$50	0 605	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
47 Drought Management	PALACIOS	Mandatory water use reduction by 15%	No	\$5,400	\$5,400	\$50	108	2020	Lavaca N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
48 Drought Management	GOLDTHWAITE	Mandatory water use reduction by 15%	Yes	\$2,950	\$2,950	\$50	59	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
49 Drought Management	RICHLAND SUD	Mandatory water use reduction by 15%	No	\$1,300	\$1,300	\$50	26	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
50 Drought Management	SAN SABA	Mandatory water use reduction by 20%	Yes	\$12,000	\$12,000	\$50	240	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
51 Drought Management	BARTON CREEK WEST WSC	Mandatory water use reduction by 15%	No	\$3,250	\$3,250	50 \$50	65	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
52 Drought Management	BEE CAVE VILLAGE	Mandatory water use reduction by 20%	Yes	\$30,700	\$30,700	50 \$50	614	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
53 Drought Management	BRIARCLIFE VILLAGE	Mandatory water use reduction by 10%	Yes	\$2 200	\$2 200	50	. 44	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
		Mandatan uniter un antian hu 2007	Ne	07.050	007.055			2020	O al anada														Nee
54 Drought Management	CEDAR PARK	Mandatory water use reduction by 20%	INO	\$27,650	\$27,650	550	553	2020	Colorado	NO	0	1	0	0	0	1	1	0	0	0	3		None
55 Drought Management	ROLLINGWOOD	Mandatory water use reduction by 15%	Yes	\$2,900	\$2,900	0 \$50	58	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
56 Drought Management	ROUND ROCK	Mandatory water use reduction by 7%	Yes	\$1,550	\$1,550	\$50	31	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
57 Drought Management	SHADY HOLLOW MUD	Mandatory water use reduction by 15%	No	\$5,850	\$5,850	\$50	117	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
58 Drought Management	SUNSET VALLEY	Mandatory water use reduction by 30%	No	\$14,000	\$14,000	\$50	280	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
59 Drought Management	THE HILLS	Mandatory water use reduction by 15%	No	\$10,850	\$10,850	\$50	217	2020	Colorado	٩o	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
60 Drought Management	TRAVIS COUNTY MUD #4	Mandatory water use reduction by 20%	Yes	\$45,350	\$45,350	\$50	907	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
61 Drought Management	TRAVIS COUNTY WCID #10	Mandatory water use reduction by 25%	Yes	\$45,250	\$45,250	\$50	905	2020	Colorado N	٩o	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
62 Drought Management	TRAVIS COUNTY WCID #17	Mandatory water use reduction by 15%	Yes	\$88,800	\$88,800	\$50	1,776	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
63 Drought Management	TRAVIS COUNTY WCID #18	Mandatory water use reduction by 15%	Yes	\$14,000	\$14,000	\$50	280	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
64 Drought Management	TRAVIS COUNTY WCID	Mandatory water use reduction by 20%	No	\$5.000	\$5.000	\$50	100	2020	Colorado	do.	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
or Drought Monogement	TRAVIS COUNTY WCID	Mandatary water use reduction by 20%	No	\$5,000	\$5,000		140	2020	Colorado	le.			0	0	0	1		0	0	0	2	Impost is peolisible	Nese
b5 Drought management	#20 VOLENTE	Mandatory water use reduction by 20%	NO	\$5,900	\$5,900	5 \$50	118	2020	Colorado	NO	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
66 Drought Management	WELLS BRANCH	Mandatory water use reduction by 5%	Yes	\$350	\$350	\$50) 7	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
67 Drought Management	WESTLAKE HILLS	Mandatory water use reduction by 5%	No	\$4,100	\$4,100	\$50) 82	2020	Colorado N	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
68 Drought Management		Mandatory water use reduction by 20%	Yes	\$15,650	\$15,650	\$50	313	2020	Colorado N	10	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
69 Drought Management	LAGO VISTA	Mandatory water use reduction by 20%	No	\$34,300	\$34,300	\$50	686	2020	Colorado N	ło	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
70 Drought Management	LAKEWAY	Mandatory water use reduction by 20%	Yes	\$91,150	\$91,150	\$50	1,823	2020	Colorado N	10	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
71 Drought Management	LOOP 360 WSC	Mandatory water use reduction by 15%	Yes	\$10,550	\$10,550	\$50	211	2020	Colorado	٩o	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
72 Drought Management	LOST CREEK MUD	Mandatory water use reduction by 20%	No	#VALUE!	#VALUE!	\$50	218	2020	Colorado	٩o	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
73 Drought Management	MANOR	Mandatory water use reduction by 15%	Yes	\$23,850	\$23,850	\$50) 477	2020	Colorado	10	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
74 Drought Management	MANVILLE WSC	Mandatory water use reduction bv 15%	Yes	\$45.550	\$45.550) \$50	911	2020	Colorado	10	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
75 Drought Management		Mandatory water use reduction by 45%	Nic	\$000	÷ 10,000			2020	Colorada					0	0				0	0	2	Impact is perliaible	None
	NORTHTOWN MUD	manualory water use reduction by 15%	INU	0000	\$0U	, 350	, 12	2020			0		U	U		1	1	U	U	0	3		
76 Drought Management	PFLUGERVILLE	Mandatory water use reduction by 15%	No	\$9,000	\$9,000	\$50	180	2020	Colorado N	10	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
77 Drought Management		Mandatory water use reduction by 25%	Yes	\$423,150	\$423,150	\$50	8,463	2020	Colorado N	ło	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None
78 Drought Management	I SINT VENTURE	Mandatory water use reduction by 15%	Yes	\$6,100	\$6,100	\$50	122	2020	Colorado	No	0	1	0	0	0	1	1	0	0	0	3	Impact is negligible	None

Water Management	Water User Group or	Strategy Description	Addressing	Total Strategy	/ Annual	Cost of	Max	Starting	Basin	Interbasin	Cost Y	Yield	Location	Water	Screening M Environmental	Matrix Factors	s (Positive (1), No Institutional	eutral (0), Ne Impacts o	egative (-1)) on Impacts or	n Impacts to	Impacts on	Total of	Quantified Environmental In
Strategy	Wholesale Provider		a Need?	Cost (\$)	Strategy Cost (\$)	Water (\$/ac-ft)	Yield (ac-ft/yr)	Decade	•	Transfer (Yes/No)				Quality	and Natural Resources	Preference	e Constraints	Water Resource	Agricultura Resources	al Recreation	Other Management Strategies	Screening Factors	
79 Drought Management	Williamson-Travis County	/ Mandatory water use reduction by 15%	Yes	\$1 15	0 \$1.15	3 \$50	23	2020	Colorado	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible
oo Drought Management	EAST BERNARD	Mandatory water use reduction by 15%	No	¢1,10	0 0005		67	0000	Brazos-	No		0		0	0				0	0			Impact is negligible
80 Drought Management		Manualory water use reduction by 15%	NO	\$3,350		J \$50	67	2020	Colorado	INO		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible
81 Drought Management	WHARTON	Mandatory water use reduction by 15%	No	\$14,550	0 \$14,550	50 \$50	291	2020	All	No		0	1	0	0	0	1	1	0	0	0	3	Impact is negligible Reduction of Irrigation return flows of up t
82 Drought Management	IRRIGATION, COLORADO COUNTY	First rice crop only, no second crop.	Yes	\$4,815,346	6 \$4,815,346	6 \$163.00	29,542	2020	All	No	1	0	1	0	-1	-1	0	-1	-1	0	0	-2	Reduction of approximately 17,000 acres feedstock for migratory birds.
		Reduce water demands based on lack of																					
83 Drought Management	Irrigation, Mills County	available water.	Yes	\$15,375	5 \$15,37	5 \$123.00	125	2020	Brazos	No	1	0	1	0	0	-1	0	0	-1	0	0	0	Negligible
84 Drought Management	IRRIGATION, MATAGORDA COUNTY	First rice crop only, no second crop.	Yes	\$24,171,356	6 \$24,171,356	6 \$649.00	37,244	2020	All	No	0	0	1	0	-1	-1	0	-1	-1	0	0	-3	Reduction of Irrigation return flows of up t Reduction of approximately 15,000 acres feedstock for migratory birds.
85 Drought Management	IRRIGATION, WHARTON COUNTY	N First rice crop only, no second crop.	Yes	\$7,242,300	0 \$7,242,300) \$260.00	27,855	2020	All	No	1	0	1	0	-1	-1	0	-1	-1	0	0	-2	Reduction of Irrigation return flows of up t Reduction of approximately 16,000 acres feedstock for migratory birds.
																							Individual WUG implementation has neoli
		Conservation efforts of 1% per year GPCD																					the region, but full regional implementatio to 51,000 ac-ft of water in the lakes and a additional water would increase storage k
86 Conservation	Aqua WSC	reduction between 140 GPCD and 100 GPCD	Yes	\$1,238,268	8 \$221,302	2 \$352.00	2,317	2020	All	No	1	0	1	0	0	0	0	1	0	0	0	3	drought triggers, and increase springflows
																							Individual WILIC implementation has pagli
		Conservation efforts of 1% per year GPCD																					the region, but full regional implementation to 51,000 ac-ft of water in the lakes and a
87 Conservation	Bastrop	reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$224,866	6 \$59,136	\$ \$303.00	1,958	2020	Colorado	No	1	0	1	0	0	0	0	1	0	0	0	3	additional water would increase storage le drought triggers, and increase springflows
	COUNTY-OTHER	Conservation efforts of 1% per year GPCD																					Individual WUG implementation has negli- the region, but full regional implementatio to 51,000 ac-ft of water in the lakes and a
88 Conservation	BASTROP COUNTY	reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$230,000	0 \$34,40 ⁻	1 \$374.00	677	2020	All	No	1	0	1	0	0	0	0	1	0	0	0	3	additional water would increase storage le drought triggers, and increase springflows
		Conservation efforts of 1% per year GPCD																					Individual WUG implementation has negli the region, but full regional implementatio
89 Conservation	Smithville	reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$109,412	2 \$16,524	4 \$376.00	155	2020	Colorado	No	1	0	1	0	0	0	0	1	0	0	0	3	additional water would increase storage le drought triggers, and increase springflows
																							Individual WUG implementation has negli the region, but full regional implementatio
90 Conservation	BLANCO	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$47,86	7 \$7,18 [.]	1 \$378.00	32	2020	Guadalup	e No	1	0	1	0	0	0	0	1	0	0	0	3	to 51,000 ac-ft of water in the lakes and a additional water would increase storage le drought triggers, and increase springflows
																							Individual WUG implementation has negli the region, but full regional implementation
	JOHNSON CITY	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD	No.	645 70		6070.00			Oslaasda	N -													to 51,000 ac-ft of water in the lakes and a additional water would increase storage le
		reduction between 140 Grcb and 100 Grcb	Tes	\$45,790	\$0,00	\$378.00	30	2020	Colorado	NO		0	1	0	0	0	0		0	0	0	3	urought triggers, and increase springhows
																							Individual WUG implementation has negli
		Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD																					the region, but tull regional implementatio to 51,000 ac-ft of water in the lakes and a additional water would increase storage le
92 Conservation	BERTRAM	reduction between 140 GPCD and 100 GPCD	Yes	\$41,42	1 \$11,952	2 \$292.00	204	2020	Brazos	No	1	0	1	0	0	0	0	1	0	0	0	3	drought triggers, and increase springflows
																							Individual WUG implementation has negli
		Conservation efforts of 1% per year GPCD																					the region, but full regional implementatio to 51,000 ac-ft of water in the lakes and a additional water would increase storage k
93 Conservation	BURNET	reduction between 140 GPCD and 100 GPCD	No	\$215,000	\$53,200	\$291.00	917	2020	All	No	1	0	1	0	0	0	0	1	0	0	0	3	drought triggers, and increase springflows
		Conservation efforts of 1% per year GPCD																					Individual WUG implementation has negli the region, but full regional implementatio to 51,000 ac-ft of water in the lakes and a
94 Conservation	COTTONWOOD SHORES	reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$30,672	2 \$7,08	7 \$322.00	23	2020	Colorado	No	1	0	1	0	0	0	0	1	0	0	0	3	additional water would increase storage le drought triggers, and increase springflows
		Conservation efforts of 1% per year CPCD																					Individual WUG implementation has negli the region, but full regional implementation to 51 000 ac-tr of water in the lakes and a
95 Conservation	HORSESHOE BAY	reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$44,289	9 \$19,252	\$257.00	1,839	2020	Colorado	No	1	0	1	0	0	0	0	1	0	0	0	3	additional water would increase storage le drought triggers, and increase springflows

npacts	Quantified Agriculture Impacts
	None
	None
	None
to 6,500 AFY. of potential	Reference cost implications stated in cost section of strategy write-up
	Reference cost implications stated in cost section of strategy write-up
to 6,300 AFY. of potential	Reference cost implications stated in cost section of strategy write-up
to 6,300 AFY. of potential	Reference cost implications stated in cost section of strategy write-up
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow).
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease VW/TP discharges (treamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
igible impacts to on could leave up aquifers. This evels, delay s.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease VW/TP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.

Water Management	Water User Group or	Strategy Description	Addressing	Total Strategy	Annual	Cost of	Max Sta	rting Basi	n Interba	sin Cost	Yield Loo	cation Wat	S ter Envi	Screening Ma vironmental	atrix Factors	Positive (1), N Institutional	eutral (0), Ne Impacts o	egative (-1))	Impacts to	Impacts on	Total of	Quantified Environmental Impacts	Quantified Agriculture Impacts
Strategy	Wholesale Provider		a Need?	Cost (\$)	Strategy Cost	Water (\$/ac-ft)	Yield Dec (ac-ft/yr)	ade	Transf (Yes/N	er lo)		Qua	llity and Re	nd Natural esources	Preference	Constraints	Water Resource	Agricultura Resources	Recreation	n Other Management Strategies	Screening Factors		
96 Conservation	MARBLE FALLS	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$221,276	\$66,986	6 \$286.00	2,059 20	120 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-1f of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
97 Conservation	MEADOWLAKES	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$64,541	\$22,755	5 \$271.00	708 20)20 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
98 Conservation	COLUMBUS	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$100,974	\$31,570	0 \$282.00	464 20	020 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to \$1,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
99 Conservation	WEIMAR	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$56,000	\$16,500	0 \$290.00	171 20	120 All	No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
100 Conservation	FLATONIA	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$37,500	\$6,000	0 \$356.00	105 20	120 All	No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
101 Conservation	LA GRANGE	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$117,647	\$16,612	2 \$396.00	42 20	120 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
102 Conservation	SCHULENBERG	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$78,947	\$12,692	2 \$343.00	232 20	120 Lavaca	No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51.000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
103 Conservation	FREDERICKSBURG	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$291,489	\$90,113	3 \$284.00	1,301 20	120 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
104 Conservation	Buda	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$221,686	\$32,923	3 \$374.00	888 20	120 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springtows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
105 Conservation	DRIPPING SPRINGS	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$49,510	\$14,081	1 \$293.00	262 20	120 Colora	lo No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
106 Conservation	DRIPPING SPRINGS	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$68,043	\$16,895	5 \$313.00	283 20	120 Colorad	0 No	1	0	10	,	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
107 Conservation	WEST TRAVIS COUNTY	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$292,384	\$108,146	6 \$267.00	7,674 20	120 Colorad	0 N0	1	0	1 0	,	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
108 Conservation	LLANO	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$87,599	\$25,621	1 \$291.00	252 20	120 Colora	o No	1	0	1 0)	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.

										-		T	Screening N	latrix Factors	(Positive (1), Ne	eutral (0), Ne	gative (-1))					
Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Addressing a Need?	Total Strategy Cost (\$)	Annual Strategy Cost (\$)	Cost of Water (\$/ac-ft)	Max Starting Yield Decade (ac-ft/yr)	Basin	Interbasin Transfer (Yes/No)	Cost Yield	Location	Water Quality	Environmental and Natural Resources	Local Preference	Institutional Constraints	Impacts or Water Resources	Agricultural Resources	Impacts to Recreation	Impacts on Other Management Strategies	Total of Screening Factors	Quantified Environmental Impacts	Quantified Agriculture Impacts
109 Conservation	BAY CITY	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$405,403	\$84,675	\$336.00	252 2020	Brazos- Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-tt of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
110 Conservation	GOLDTHWAITE	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$41,809	\$4,486	\$449.00	58 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-It of water in the lakes and aquifers. This additional water would increase storage levels, delay drought riggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
111 Conservation	SAN SABA	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$91,823	\$31,295	\$275.00	510 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-It of water in the lakes and aquifers. This additional water would increase storage levels, delay drought riggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
112 Conservation	BARTON CREEK WEST	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$38,391	\$11,855	\$282.00	152 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
113 Conservation	BEE CAVE VILLAGE	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$137,097	\$47,590	\$272.00	1,323 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-t1 of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
114 Conservation	CEDAR PARK	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$238,695	\$71,011	\$289.00	921 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-t1 of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
115 Conservation	JONESTOWN	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$46,456	\$7,130	\$356.00	122 20	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-It of water in the lakes and aquifers. This additional water would increase storage levels, delay drought ritggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
116 Conservation	LAGO VISTA	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$187,406	\$54.394	\$291.00	972 2020	Colorado	Νο	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-10 water in the lakes and aquifers. This additional water would increase storage levels, delay drought tridgers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
117 Conservation	LAKEWAY	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$544.773	\$191.119	\$272.00	3.921 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-10 water in the lakes and aquifers. This additional water would increase storage levels, delay drought tridoers, and increase soringflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
118 Conservation	LOOP 360 WSC	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$71.683	\$29.963	\$258.00	648 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-10 d water in the lakes and aquifers. This additional water would increase storage levels, delay drought tincers, and increase storage levels, delay	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
119 Conservation	LOST CREEK MUD	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$108.519	\$31.382	\$291.00	294 2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-10 d vater in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
120 Conservation	PFLUGERVILLE	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$1,701.900	\$238.299	\$395.00	3,966 2020	Colorado	Νο	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-10 water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
121 Conservation	POINT VENTURE	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$31,028	\$9,605	\$282.00	301 2020	Colorado	Νο	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.

Water Management	Water User Group or	Strategy Description	Addressing	Total Strategy	Annual	Cost of	Max S	tarting	Basin	Interbasin	Cost Yield	d Locatio	n Water	Screening N Environmental	atrix Factors Local	(Positive (1), I Institutiona	Neutral (0), N	egative (-1)) on Impacts o	n Impacts	to Impacts or	Total of	Quantified Environmental Impacts	Quantified Agriculture Impacts
Strategy	Wholesale Provider		a Need?	(\$)	Cost (\$)	(\$/ac-ft)	(ac-ft/yr)	ecade		(Yes/No)			Quality	and Natural Resources	Preterence	Constraints	Resource	Agricultur es Resource	al Recreat	Managemer Strategies	t Factors		
122 Conservation	ROLLINGWOOD	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$36,238	\$10,881	1 \$286.00	118	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflw), thus balancing each other out by the time the lower three counties are reached.
123 Conservation	ROUND ROCK	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$36,147	\$5,131	1 \$395.00	13	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac+t of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
124 Conservation	SHADY HOLLOW MUD	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$106,952	\$15,088	8 \$397.00	38	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflw), thus balancing each other out by the time the lower three counties are reached.
125 Conservation	SUNSET VALLEY	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$31,520	\$10,475	9 \$276.00	366	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
126 Conservation	THE HILLS	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$97,374	\$37,930	0 \$263.00	665	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51.000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
127 Conservation	TRAVIS COUNTY MUD #4	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$137,248	\$65,793	3 \$251.00	2,114	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
128 Conservation	TRAVIS COUNTY WCID #10	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$171,890	\$58,492	2 \$275.00	1,533	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-fl of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
129 Conservation	TRAVIS COUNTY WCID #17	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$828,248	\$246,200	0 \$289.00	4,645	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
130 Conservation	TRAVIS COUNTY WCID #18	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$147,665	\$22,512	2 \$375.00	104	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51.000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
131 Conservation	TRAVIS COUNTY WCID #19	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$28,215	\$12,726	6 \$255.00	229	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
132 Conservation	TRAVIS COUNTY WCID #20	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$38,290	\$15,423	3 \$261.00	268	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-t1 of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
133 Conservation	WEST LAKE HILLS	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	Yes	\$112,784	\$41,973	3 \$267.00	700	2020 C	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springtows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.
134 Conservation	EAST BERNARD	Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD reduction between 140 GPCD and 100 GPCD	No	\$52,607	\$7,512	2 \$395.00	97	2020 C	Brazos- Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-t1 of water in the lakes and aquifers. This additional water would increase storage levels, delay drought triggers, and increase springflows.	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamflow), thus balancing each other out by the time the lower three counties are reached.

	Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Addressing a Need?	Total Strategy Cost (\$)	Annual Strategy Cost	Cost of Water (\$/ac-ft)	Max Sta Yield De (ac-ft/yr)	arting Basin ecade	Interbasin Transfer (Yes/No)	Cost	Yield L	_ocation	Water I Quality	Screening M Environmental and Natural Resources	atrix Factors Local Preference	(Positive (1), Ne Institutional Constraints	eutral (0), Neg Impacts on Water Resources	gative (-1)) Impacts on Agricultural Resources	Impacts to Recreation	Impacts on Other Management	Total of Screening Factors	Quantified Environmental Impacts	Quantified Agriculture Impacts
						(\$)															Strategies			
			Conservation efforts of 1% per year GPCD reduction for >200 GPCD, and 0.5% GPCD																				Individual WUG implementation has negligible impacts to the region, but full regional implementation could leave up to 51,000 ac-ft of water in the lakes and aquifers. This additional water would increase storage levels, delay	Individual WUG implementation has negligible impacts to the region. The overall impact is likely negligible as well. Surface water conservation would increase the amount of water available in lakes and streams, while groundwater conservation would decrease WWTP discharges (streamfl/W), thus balancing each other out
135 Con	servation		reduction between 140 GPCD and 100 GPCD	No	\$211,000	\$52,000	\$312.00	182 2	Reazon	No	1	0	1	0	0	0	0	1	0	0	0	3	drought triggers, and increase springflows.	by the time the lower three counties are reached.
136 Con	iservation - On farm	COLORADO COUNTY	amount of water required for rice growing	YES	\$547,412	\$45,435	\$22.89	2,949 2	2020 Colorado	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	measures.
137 Con	servation - On farm	IRRIGATION, COLORADO COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$129,741	\$10,768	\$22.89	385 2	020 Colorado	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
138 Con	nservation - On farm Inservation	IRRIGATION, COLORADO COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$814,992	\$67,644	\$22.89	4,034 2	020 Lavaca	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
139 Con	nservation - On farm Inservation	IRRIGATION, MATAGORDA COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$1,784,048	\$148,076	\$22.89	11,269 2	Brazos- 2020 Colorado	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
140 Con	servation - On farm	IRRIGATION, MATAGORDA COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$304,331	\$25,259	\$22.89	1,986 2	020 Colorado	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
Con 141 Con	nservation - On farm nservation	IRRIGATION, MATAGORDA COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$2,127,003	\$176,541	\$22.89	13,610 2	Colorado 2020 Lavaca	- No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
Con 142 Con	nservation - On farm Iservation	IRRIGATION, WHARTON COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$1,759,978	\$146,078	\$22.89	10,577 2	Brazos- 2020 Colorado	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
Con 143 Con	nservation - On farm Inservation	IRRIGATION, WHARTON COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$488,160	\$40,517	\$22.89	2,203 2	020 Colorado	No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
Con 144 Con	nservation - On farm Inservation	IRRIGATION, WHARTON COUNTY	On-Farm conservation measures to reduce the amount of water required for rice growing	YES	\$520,355	\$43,189	\$22.89	3,073 2	Colorado 2020 Lavaca	- No	1	-1	1	0	-1	0	0	-1	1	0	0	0	Negligible impacts to streamflow and bay	Reference cost implications to implement conservation measures.
Con Con 145 Imp	nservation - Irrigation nveyance provements	IRRIGATION, COLORADO COUNTY	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	YES	\$498,876	\$41,407	\$10.96	3,793 2	Brazos- 2020 Colorado	No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 1,897 ac-ft/yr of return flows to Colorado River and Matagorda Bay	Reference cost implications to implement conservation measures.
Con Con 146 Imp	nservation - Irrigation nveyance provements	IRRIGATION, COLORADO COUNTY	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	YES	\$118,237	\$9,814	\$10.96	431 2	020 Colorado	No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 216 ac-ft/yr of return flows to Colorado River and Matagorda Bay	Reference cost implications to implement conservation measures.
Con Con 147 Imp	nservation - Irrigation nveyance provements	IRRIGATION, COLORADO COUNTY	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	YES	\$742,732	\$61.647	\$10.96	5.188 2	020 Lavaca	No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 2,594 ac-ft/yr of return flows to Colorado River and Matagorda Bay	Reference cost implications to implement conservation measures.
Con Con 148 Imp	nservation - Irrigation nveyance provements	IRRIGATION, MATAGORDA COUNTY	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	YES	\$1,625,868	\$134,947	\$10.96	14,492 2	Brazos- 2020 Colorado	No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 7,246 ac-ft/yr of return flows to Colorado River and Matagorda Bay	Reference cost implications to implement conservation measures.
Con Con 149 Imp	nservation - Irrigation nveyance provements	IRRIGATION, MATAGORDA COUNTY	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	YES	\$277,348	\$23,020	\$10.96	2,554 2	020 Colorado	No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 1,277 ac-ft/yr of return flows to Colorado River and Matagorda Bay	Reference cost implications to implement conservation measures.
Con Con 150 Imp	nservation - Irrigation nveyance provements	IRRIGATION, MATAGORDA COUNTY	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	YES	\$1,938,415	\$160.888	\$10.96	17.502 2	Colorado	- No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 8,751 ac-ft/yr of return flows to	Reference cost implications to implement conservation measures.
Con Con	servation - Irrigation	IRRIGATION, WHARTON	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water peeded/loct	VES	\$1,603,932	\$133.126	\$10.96	13 602 2	Brazos-	No	1	-1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 6,801 ac-ft/yr of return flows to	Reference cost implications to implement conservation
Con Con	nservation - Irrigation nveyance	IRRIGATION, WHARTON	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/lost	VES	\$444.979	\$26.025	\$10.06	2 924 2		No	1	1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 1,417 ac-ft/yr of return flows to	Reference cost implications to implement conservation
Con Con 152 Imp	nservation - Irrigation nveyance	IRRIGATION, WHARTON	Improvements to the methods of water delivery to the rice fields in order to reduce the amount of water needed/loct	VES	\$474.219	\$20,320	\$10.06	2,057 2	Colorado	- No	1	1	1	0	1	0	0	1	1	0	0	4	Reduction of up to 1,976 ac-ft/yr of return flows to	Reference cost implications to implement conservation
Con	nservation - Sprinkler	IRRIGATION,	Rice farming conversion to sprinkler irrigation	VES	\$404.224	¢39,300	\$10.90	1 000 2	Brazos-	No		-1	4	0	4	1	0		0	0	0	4	Reduction of up to 1,099 ac-ft/yr of return flows to	Reference cost implications of conversion
Con	servation - Sprinkler	IRRIGATION,	Rice farming conversion to sprinkler irrigation	VES	\$37 168	\$3.085	\$36.02	181 2		No	1	-1	1	0	-1	-1	0	1	0	0	0	0	Reduction of up to 181 ac-ft/yr of return flows to Colorado	Reference cost implications of conversion
Con	servation - Sprinkler	IRRIGATION,	Rice farming conversion to sprinkler irrigation	VES	\$291.279	\$22.246	\$26.02	1 565 2		No	1	1	1	0	.1	1	0	1	0	0	0	0	Reduction of up to 1,565 ac-ft/yr of return flows to	Reference cost implications of conversion
Con	nservation - Sprinkler		Rice farming conversion to sprinkler irrigation	150	\$201,270	\$23,340	\$30.02	1,505 2	Brazos-	No		-1		0	-1	-1	0		0	0	0	0	Reduction of up to 3,910 ac-ft/yr of return flows to	Reference cost implications of conversion.
Con	servation - Sprinkler	IRRIGATION,	Rice farming conversion to sprinkler irrigation	TES	\$669,614	\$55,578	\$36.02	3,910 2	Colorado	NO	1	-1	1	0	-1	-1	0		0	0	0	0	Reduction of up to 680 ac-ft/yr of return flows to Colorado	Reference cost implications of conversion.
158 Irrig Con	gation Iservation - Sprinkler	IRRIGATION,	(LEPA) versus field flooding Rice farming conversion to sprinkler irrigation	YES	\$115,635	\$9,598	\$36.02	680 2	2020 Colorado Colorado	- No	1	-1	1	0	-1	-1	0	1	0	0	0	0	River and Matagorda Bay Reduction of up to 4,696 ac-ft/yr of return flows to	Reference cost implications of conversion.
159 Irrig Con	ation servation - Sprinkler	MATAGORDA COUNTY	(LEPA) versus field flooding Rice farming conversion to sprinkler irrigation	YES	\$802,187	\$66,582	\$36.02	4,696 2	Brazos-	No	1	-1	1	0	-1	-1	0	1	0	0	0	0	Colorado River and Matagorda Bay Reduction of up to 3,750 ac-ft/yr of return flows to	Reference cost implications of conversion.
160 Irrig	gation	COUNTY	(LEPA) versus field flooding	YES	\$648,637	\$53,837	\$36.02	3,750 2	020 Colorado	No	1	-1	1	0	-1	-1	0	1	0	0	0	0	Colorado River and Matagorda Bay Reduction of up to 895 ac-ft/vr of return flows to Colorado	Reference cost implications of conversion.
161 Irrig	jation		(LEPA) versus field flooding	YES	\$163,772	\$13,593	\$36.02	895 2	020 Colorado	No	1	-1	1	0	-1	-1	0	1	0	0	0	0	River and Matagorda Bay	Reference cost implications of conversion.
162 Irrig	jation	COUNTY	(LEPA) versus field flooding	YES	\$190,585	\$15,819	\$36.02	1,098 2	2020 Lavaca	No	1	-1	1	0	-1	-1	0	1	0	0	0	0	Colorado River and Matagorda Bay	Reference cost implications of conversion.
Exp	ansion of		Expand use of Carrizo-Wilcox aquifer by developing wellfield in Brazos Basin of Bastrop																				formation, drawdown in the aquifer could be up to 237 feet. Assume that using water within the stated available yield should result in negligible impacts to springflows, but	
163 Gro Nev	undwater Supply	Aqua WSC	County Purchase SW through contract and construct new	Yes	\$9,777,000	\$1,037,000	\$259	4,000 2	020 Brazos	No	1	-1	1	0	0	1	1	0	0	0	0	3	aquifer levels and springflows should be monitored.	Negligible Could decrease amount of water available for release
164 con	struction)	Aqua WSC	SWTP and transmission line from Colorado River	Yes	\$127,538,000	\$18,940,000	\$1,263	15,000 2	040 Colorado	No	-1	1	1	0	0	0	-1	0	0	-1	0	-1	Negligible	from the Highland Lakes by up to 15,000 AFY
165 con	struction)	City of Bastrop	SWTP and transmission line from Colorado River	Yes	\$34,858,000	\$5,526,000	\$2,210	2,500 2	050 Colorado	No	-1	1	1	0	0	0	-1	0	0	-1	0	-1	Negligible Water supply is within the MAG, so dependent on the	from the Highland Lakes by up to 2,500 AFY
Dev 166 Gro	elopment of New undwater Supply	City of Bastrop	Develop a new supply of groundwater in the Carrizo-Wilcox aquifer in the Colorado Basin of Bastrop County	Yes	\$2,976,000	\$281,000	\$937	300 2	2020 Colorado	No	0	-1	1	0	0	1	1	0	0	0	0	2	tormation, drawdown in the aquifer could be up to 237 feet. Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
167 Reu	ise (Direct)	City of Bastrop	Direct reuse of wastewater effluent.	Yes	\$4,625,000	\$502,000	\$448	1,120 2	040 Colorado	No		0	1	0	1	0	0	1	-1	-1	1	2	Decrease return flows by 1,120 ac-ft/yr	Decrease return flows by 1,120 ac-ft/yr
																							Water supply is within the MAG, so dependent on the formation, drawdown in the aquifer could be up to 237 feet. Assume that using water within the stated available yield	
Exp 168 Gro	oansion of oundwater Supply	WCID #2	Expand use of Carrizo-Wilcox aquiter in Colorado Basin of Bastrop County	Yes	\$2,150,000	\$203,000	\$369	550 2	2060 Colorado	No	1	0	1	0	0	0	0	0	0	0	0	2	snourd result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible

	Water Management	Water User Group or	Strategy Description	Addressing	Total Strategy	Annual	Cost of	Max	Starting	Basin	Interbasin	Cost Vield	Location	Water	Screening M	atrix Factors	(Positive (1), N	eutral (0), Neg	gative (-1))	Impacts to	Impacts on	Total of	Quantified Environmental Impacts	Quantified Agriculture Impacts
	Strategy	Wholesale Provider	Strategy Description	a Need?	Cost (\$)	Strategy Cost (\$)	Water (\$/ac-ft)	Yield (ac-ft/yr)	Decade	Basin	Transfer (Yes/No)	COSt Heiu	Location	Quality	and Natural Resources	Preference	Constraints	Water Resources	Agricultural Resources	Recreation	Other Management Strategies	Screening Factors		quantined Agriculture impacts
16	Expansion of ଡ Groundwater Supply	County-Other, Bastrop County	Expand use of Carrizo-Wilcox aquifer in Colorado Basin of Bastrop County	Yes	\$2,150,000	\$203,000	\$3,383	60	2020	Colorado	No	-1 0	1	0	0	0	1	0	0	0	0	1	Water supply is within the MAG, so dependent on the formation, drawdown in the aquifer could be up to 237 feet Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
17	Expansion of 0 Groundwater Supply	Elgin	Expand use of Carrizo-Wilcox aquifer in Colorado Basin of Bastrop County	Yes	\$2,150,000	\$200,000) \$667	300	2020	Colorado	No	0 -1	1	0	0	0	0	0	0	0	0	0	Water supply is within the MAG, so dependent on the formation, drawdown in the aquifer could be up to 237 feet Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
17	New LCRA Contract (with 1 construction)	Elgin	Purchase SW through contract and construct new SWTP and transmission line from Colorado River	Yes	\$61,623,000	\$8,986,000	\$2,567	3,500	2030	Colorado	No	-1 1	0	0	0	0	-1	0	0	-1	0	-2	Negligible Water supply is within the MAG, so drawdown in the	Could decrease amount of water available for release from the Highland Lakes by up to 3,500 AFY
17	Development of New 2 Groundwater Supply	Smithville	Develop a new supply of groundwater in the Queen City aquifer in the Colorado Basin of Bastrop County	Yes	\$2,620,000	\$241,000	\$1,607	150	2070	Colorado	No	-1 1	1	0	0	-1	0	0	0	0	0	0	aquifer could be up to 13 feet. Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored. Water supply is within the MAG, so dependent on the formation, drawdown in the aquifer could be up to 237 feet	Negligible
17:	Expansion of 3 Groundwater Supply	Manufacturing, Bastrop County	Expand use of Carrizo-Wilcox aquifer in Colorado Basin of Bastrop County	Yes	\$2,150,000	\$198,000	\$995	i 199	2020	Colorado	No	0 0	1	0	0	0	0	0	0	0	0	1	Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored. Water supply is within the MAG, so drawdown in the	Negligible
17-	Development of New 4 Groundwater Supply	Mining, Bastrop County	Develop a new supply of groundwater in the Queen City aquifer in the Guadalupe Basin of Bastrop County	Yes	\$2,446,000	\$231,000	\$755	306	2020	Guadalupe	No	0 0	1	0	0	0	0	0	0	0	0	1	aquifer could be up to 13 feet. Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
17	Development of New 5 Groundwater Supply	Mining, Bastrop County	Develop a new supply of groundwater in the Carrizo-Wilcox aquifer in the Guadalupe Basin of Bastrop County	Yes	\$3,391,000	\$321,000) \$689	466	i 2040	Guadalupe	e No	0 0	1	0	0	0	0	0	0	0	0	1	Water supply is within the MAG, so dependent on the formation, drawdown in the aquifer could be up to 237 feet Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
17	Expansion of	County-Other, Blanco	Expand use of Ellenburger-San Saba aquifer in Colorado Basin of Blanco County.	Ves	\$490.000	\$44.000	\$800	55	2050	Colorado	No	0 1	1	0	0	0	1	0	0	0	0	3	Water supply is within the MAG, so drawdown in the aquifer could be up to 2 feet. Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be moincerd.	Neolioite
17	Evnansion of	County-Other Blanco	Evnand use of Hickory aquifer in Colorado Basin	163	\$450,000	\$44,000	<i>,</i> 4800	/ 33	2030	Colorado				0	0	0		0	0	0			Water supply is within the MAG, so drawdown in the aquifer could be up to 7 feet. Assume that using water within the stated available yield should result in negligible impacts to expring the unifer leavies and explorible.	reginjure
17	7 Groundwater Supply	County Other, Blanco	of Blaco County Removal of brush to increase recharge and runoff. Firm yield determined from Pedemales	Yes	\$1,316,000	\$120,000	\$2,182	2 55	2050	Colorado	No	-1 1	1	0	0	0	1	0	0	0	0	2	should be monitored.	Negligible
17	Expansion of	County JOHNSON CITY	River Watershed Feasibility Study.	Yes	\$2,137,000	\$213,700	\$500	425	2020	Colorado	No	0 -1	1	0	1	0	0	0	0	0	0	1	Potential increases to streamflow of up to 425 AFY Water supply is within the MAG, so drawdown in the aquifer could be up to 2 feet. Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows	Negligible Additional drawdown of 175 AFY is likely to have
17	Expansion of		Colorado Basin of Blanco County	Yes	\$1,505,000	\$140,000) \$800	175	2020	Colorado	No	0 1	1	0	0	0	0	0	0	0	0	2	should be monitored. Water supply is within the MAG, so aquifer should maintain 100% saturated thickness. Assume that using water within the stated available yield should result in negligible impact	negligible impacts to agriculture
18	Groundwater Supply	Bertram	Colorado Basin of Burnet County	Yes	\$1,374,000	\$127,000	\$706	i 180	2020	Brazos	No	0 0	1	0	0	0	0	0	0	0	0	1	monitored.	negligible impacts to agriculture
18	Buena Vista Regional 1 Project	Bertram	WTP and transmission of treated surface water to Buena Vista residents, Bertram, and others	Yes	\$4,656,599	\$707,707	\$801	884	2020	Brazos	Yes	0 1	-1	1	0	0	-1	0	0	-1	0	-1	Project could remove up to 5,000 AFY of water from the Highland Lakes, with no return flows.	Project could remove up to 5,000 AFY of water from the Highland Lakes, with no return flows.
18	Buena Vista Regional 2 Project	Burnet	WTP and transmission of treated surface water to Buena Vista residents, Bertram, and others Contract with LCRA. Construction of new raw	No	\$10,535,292	\$1,601,147	\$801	2,000	2020	Colorado	No	0 1	1	1	0	0	-1	0	0	-1	0	1	Project could remove up to 5,000 AFY of water from the Highland Lakes, with no return flows.	Project could remove up to 5,000 AFY of water from the Highland Lakes, with no return flows.
18	Marble Falls Regional 3 Project	COTTONWOOD SHORES	water intake and regional WTP at Max Starcke Dam, and construction of transmission lines to support future development. Contract with LCRA. Construction of new raw	No	\$8,172,147	\$1,296,700	\$1,297	1,000	2020	Colorado	No	-1 1	1	0	0	0	-1	0	0	-1	0	-1	Project could remove up to 5,600 AFY of water from the Highland Lakes, with no return flows.	Project could remove up to 5,600 AFY of water from the Highland Lakes, with no return flows.
18	Marble Falls Regional 4 Project Buena Vista Regional	County-Other, Burnet County County-Other, Burnet	water intake and regional WTP at Max Starcke Dam, and construction of transmission lines to Contract with LCRA. Expansion of Buchanan WTP and transmission of treated surface water to	No	\$7,175,145	\$1,138,502	\$1,297	878	2020	Colorado	No	-1 1	1	0	0	0	-1	0	0	-1	0	-1	Project could remove up to 5,600 AFY of water from the Highland Lakes, with no return flows. Project could remove up to 5,000 AFY of water from the	Project could remove up to 5,600 AFY of water from the Highland Lakes, with no return flows. Project could remove up to 5,000 AFY of water from
18	5 Project Buena Vista Regional	County County-Other, Burnet	Buena Vista residents, Bertram, and others Contract with LCRA. Expansion of Buchanan WTP and transmission of treated surface water to	Yes	\$5,267,646	\$800,573	\$801	1,000	2040	Brazos	No	0 1	1	1	0	0	-1	0	0	-1	0	1	Highland Lakes, with no return flows. Project could remove up to 5,000 AFY of water from the	the Highland Lakes, with no return flows. Project could remove up to 5,000 AFY of water from
18	6 Project East Lake Buchanan	County County-Other, Burnet	Buena Vista residents Contract with LCRA. Regional SWTP and deep water intake at Council Creek Village to provide	No	\$5,267,646	\$800,573	\$801	1,000	2020	Colorado	No	0 1	1	1	0	0	-1	0	0	-1	0	1	Highland Lakes, with no return flows. Project could remove up to 935 AFY of water from the	the Highland Lakes, with no return flows. Project could remove up to 935 AFY of water from the
18	Brush Control	County County-Other, Burnet County	Ireated water to communities along East Lake Removal of brush to increase recharge and runoff. Firm yield determined from Pedernales River Watershed Feasibility Study.	No	\$2,137,000	\$1,612,000) \$1,724) \$500	935	2020	Colorado	No	0 -1	1	0	1	0	-1	0	0	-1	0	1	Highland Lakes, with no return flows. Potential increases to streamflow of up to 425 AFY	Highland Lakes, with no return tiows. Negligible
18	LCRA Contract 9 Amendment	GRANITE SHOALS	Amend existing contract with LCRA for additional supply	Yes	\$37,750	\$37,750) \$151	250	2050	Colorado	No	1 1	1	0	0	0	0	0	0	-1	0	2	Individual WUG implementation has negligible impacts to the region, but full regional implementation could remove up to 70.000 AFY from the Highland Lakes or other proposed LCRA reservoirs. Approximately 23.000 AFY would provide additional instream flows from the release point down to Matagorda County.	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.
19	Reuse (Direct)	HORSESHOE BAY	Direct reuse of wastewater effluent.	Yes	\$0	\$0	\$0	100	2020	Colorado	No	1 0	1	0	1	0	1	1	0	0	0	5	None	None

Weise Manager	Water Harry Commun.	Otanta mu Dana ain tian	Addressive	Total Otrata	A	Grander		Otenting	Deale	Interlegele	Or at 1	tata luta		Meter 5	Screening M	latrix Factors	(Positive (1), N	leutral (0), Ne	gative (-1))	l Immerate te	lana anta an	Total of	Our different Environmentel Immente	
Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	a Need?	g Total Strategy Cost (\$)	Annual Strategy Cost	Water (\$/ac-ft)	Max Yield (ac-ft/yr)	Decade	Basin	Transfer (Yes/No)	Cost Y	ield Lo	cation	Quality	and Natural Resources	Local Preference	Constraints	Water Resources	n Impacts on Agricultural s Resources	Recreation	Impacts on Other Management	Screening Factors	Quantified Environmental impacts	Quantified Agriculture impacts
					(4)																onatogics		Individual WUG implementation has negligible impacts to	
																							the region, but full regional implementation could remove up to 70,000 AFY from the Highland Lakes or other proposed LCRA reservoirs. Approximately 23,000 AFY	Increases in firm municipal and industrial contracts
LCRA Contract 191 Amendment	HORSESHOE BAY	Amend existing contract with LCRA for additional supply	Yes	\$30,200	\$30,200	5 \$151	1 200	2020	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	would provide additional instream flows from the release point down to Matagorda County.	over time will eventually reduce the amount of available interruptible water to 0 AFY.
		Contract with LCRA. Construction of new raw																						
Marble Falls Regional	MARBLE FALLS	water intake and regional WTP at Max Starcke Dam, and construction of transmission lines to																					Project could remove up to 5,600 AFY of water from the	Project could remove up to 5,600 AFY of water from
192 Project		support future development.	Yes	\$32,688,587	\$5,186,798	3 \$1,297	4,000	2020	Colorado	No	-1	1	1	0	0	0	-1	0	0	-1	0	-1	Highland Lakes, with no return flows.	the Highland Lakes, with no return flows.
																							100% saturated thickness. Assume that using water within the stated available yield should result in negligible impacts	negligible impacts to agriculture, but mining demand could drawdown aquifer levels up to 30%, which could
Expansion of 193 Groundwater Supply	Mining, Burnet County	Expand use of Ellenburger-San Saba aquifer in Colorado Basin of Burnet County	Yes	\$10,597,000	\$1,034,000	\$689	9 1,500	2020	Colorado	No	0	-1	1	0	0	0	0	0	0	0	0	0	to springflows, but aquifer levels and springflows should be monitored.	impact agriculture well pumping if located nearby. Local GCD can ensure appropriate distance.
																							100% saturated thickness. Assume that using water within the stated available yield should result in negligible impacts	3
Expansion of 194 Groundwater Supply	Mining, Burnet County	Expand use of Hickory aquifer in Colorado Basin of Burnet County	Yes	\$13,437,000	\$1,293,000	\$718	3 1,800	2030	Colorado	No	0	-1	1	0	0	0	0	0	0	0	0	0	to springflows, but aquifer levels and springflows should be monitored.	Negligible impact to agriculture due to limited use of aquifer for irrigation.
																							Water supply is within the MAG, so aquifer should maintain 100% saturated thickness. Assume that using water within	
Expansion of		Expand use of Marble Falls aquifer in Colorado																					the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be	s No impact to agriculture as aquifer is not used for
195 Groundwater Supply	Mining, Burnet County	Basin of Burnet County	Yes	\$7,257,000	\$703,000	5469	9 1,500	2060	Colorado	No	0	-1	1	0	0	0	0	0	0	0	0	0	monitored.	irrigation.
																							Water supply is within the MAG, so drawdown in the aquifer could be up to 12 feet, relative to 1999 conditions.	
Expansion of	County-Other, Colorado	Expand use of Gulf Coast aquifer in Colorado	Vec	\$1.466.000	\$126.000	n • • • • • •		2020	Colorado	No	0	0	1	0	0	0	1	0	0	0	0	2	Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored	Neoligihle
LCRA WMP - Interruptible	County, Matagorda County, Wharton County	municipal and industrial demands versus fully authorized demands	Yes	\$3,894,000	\$3,894,000	5 \$502	0 77,880	2020	All	No	1	1	1	0	1	1	0	0	1	-1	0	5	Environmental flows also have a firm commitment under the LCRA WMP of 33,440 AFY.	Provides a positive impact to agriculture in the volumes shown in Table 5-17.
	Irrigation, Colorado County, Matagorda																							
198 COA Return Flows	County, Wharton County	Return flows from City of Austin and others	Yes	\$0	\$0	0 \$0	26,044	2020	All	No	1	0	1	0	1	1	0	1	1	0	0	6	Benefits shown in Table 5-2	Benefits shown in Table 5-2
																							Water supply is within the MAG, so drawdown in the aquifer could be up to 12 feet, relative to 1999 conditions.	
Expansion of 199 Groundwater Supply	County-Other, Fayette County	Expand use of Gulf Coast aquifer in Colorado Basin of Favette County	Yes	\$2.279.000	\$214.000	\$620	345	2020	Colorado	No	0	1	1	0	0	0	1	0	0	0	0	3	Assume that using water within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Nealiaible
					* =:,•••									-	-									
																							Water supply is within the MAG, so drawdown in the aquifer could be up to 12 feet, relative to 1999 conditions.	
Expansion of	County-Other, Fayette	Expand use of Gulf Coast aquifer in Lavaca Basin	No.	A A ATA AA						Nie													Assume that using water within the stated available yield should result in negligible impacts to springflows, but	N 11 - 11 -
200 Groundwater Supply	FLATONIA		res	\$2,279,000	\$213,000	5 \$724	1 294	2020	Lavaca	NO	0	1	1	0	0	0	1	0	0	0	0	3	aquirer levels and springhows should be monitored.	Negligible
201 Reuse (Direct)		Direct reuse of wastewater effluent.	No	\$1,226,000	\$110,000	\$821	1 182	2020	Lavaca	No	0	-1	1	0	1	0	1	1	0	0	0	3	Reduced demand on aquifer by up to 182 AFY.	None
																							Water supply is within the MAG, so drawdown in the aquifer could be up to 12 feet, relative to 1999 conditions. Assume that using water within the stated available yield	
Expansion of 202 Groundwater Supply	FLATONIA	Expand use of Gulf Coast aquifer in Lavaca Basin of Fayette County	No	\$2,241,000	\$206,000	\$2,060	0 100	2020	Lavaca	No	-1	0	1	0	0	0	0	0	0	0	0	0	should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
																							Water supply is within the MAG, so drawdown in the	
Expansion of	Manufacturing, Fayette	Expand use of Gulf Coast aquifer in Lavaca Basin																					Assume that using water within the stated available yield should result in negligible impacts to springflows, but	
203 Groundwater Supply	County	of Fayette County	Yes	\$2,279,000	\$214,000	547	7 391	2020	Lavaca	No	0	1	1	0	0	0	0	0	0	0	0	2	aquifer levels and springflows should be monitored.	Negligible
																							aquifer could be up to 12 feet, relative to 1999 conditions. Assume that using water within the stated available yield	
Expansion of 204 Groundwater Supply	Mining, Fayette County	Expand use of Gulf Coast aquifer in Colorado Basin of Fayette County	Yes	\$2,279,000	\$214,000	\$622	2 1,576	2020	Colorado	No	0	1	1	0	0	0	0	0	0	0	0	2	should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
																							Water supply is within the MAG, so drawdown in the aquifer could be up to 60 feet. Assume that using water	
Expansion of		Expand use of Sparta aquifer in Guadalupe Basin																					within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows	
205 Groundwater Supply	Mining, Fayette County	of Fayette County	Yes	\$753,000	\$68,000	\$1,030	66	2020	Guadalup	e No		1	1	0	0	0	0	0	0	0	0	2	should be monitored.	Negligible
																							aquifer could be up to 12 feet, relative to 1999 conditions. Assume that using water within the stated available yield	
Expansion of 206 Groundwater Supply	Mining, Fayette County	Expand use of Gulf Coast aquifer in Lavaca Basin of Fayette County	Yes	\$2,279,000	\$214,000	\$622	2 344	2020	Lavaca	No	0	1	1	0	0	0	0	0	0	0	0	2	should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Negligible
Long Lake Storage	Steam-Electric, Fayette	Use stored water from Long Lake released																						
207 Release	County	downstream for diversion	Yes	\$2,822,000	\$374,000	5 \$187	7 2,000	2020	Colorado	No	1	0	0	0	1	0	0	1	0	0	0	3	Refer to Direct Reuse discussion quantifying return flows Individual WUG implementation has negligible impacts to	Change "no adverse" to "negligible"
																							the region, but full regional implementation could remove up to 70,000 AFY from the Highland Lakes or other property LCRA recompiler. Approximately 23,000 AFY	Increases in firm municipal and industrial contracts
LCRA Contract 208 Amendment	Steam-Electric, Fayette County	Amend existing contract with LCRA for additional supply.	Yes	\$2,265,000	\$2,265,000	0 \$151	1 15,000	2020	Colorado	No	1	1	1	0	0	0	0	0	0	0	0	3	would provide additional instream flows from the release point down to Matagorda County.	over time will eventually reduce the amount of available interruptible water to 0 AFY.
	County-Other Gillespin	Removal of brush to increase recharge and																						
209 Brush Control	County County	strategy.	No	\$2,137,000	\$213,700	\$500	425	2020	Colorado	No	0	0	1	0	1	0	1	1	0	1	1	6	Potential increases to streamflow of up to 425 AFY Water supply is within the MAG, so drawdown in the	Negligible
																							aquifer could be up to 5 feet, relative to 2010 conditions. Assume that using water within the stated available yield	
Expansion of 210 Groundwater Supply	Manufacturing, Gillespie County	Expand use of Ellenburger-San Saba aquifer in Colorado Basin of Gillespie County	Yes	\$3,880,000	\$368,000	\$588	626	2020	Colorado	No	0	1	1	0	0	0	0	0	0	0	0	2	should result in negligible impacts to springflows, but aquifer levels and springflows should be monitored.	Additional drawdown of 626 AFY is likely to have negligible impacts to agriculture
211 Reuse (Direct)	Buda	Direct reuse of wastewater effluent.	Yes	\$5,464.000	\$1,180.000	\$527	7 2,240	2020	Colorado	No	1	-1	1	0	1	0	0	1	0	-1	1	3	Reduction of return flows by up to 2,240 AFY.	None
Groundwater Importation		Importation of groundwater from the Carrizo- Wilcox aguifer in Gonzales County (Region L)																						
212 (HCPUA Pipeline)	Buda	through a pipeline. Buda portion.	Yes	\$34,996,869	\$4,751,402	2 \$1,926	2,467	2030	Colorado	No	-1	1	-1	0	0	1	0	0	0	0	0	1	See Region L Plan	Negligible

	Water Management Strategy	Water User Group or Wholesale Provider	Strategy Description	Addressing a Need?	Total Strategy Cost (\$)	Annual Strategy Cost (\$)	Cost of Water (\$/ac-ft) (Max St Yield Do (ac-ft/yr)	arting ecade	Basin	Interbasin Transfer (Yes/No)	Cost Yie	eld Lo	cation C	Water Quality	Screening M Environmental and Natural Resources	Matrix Factors Local Preference	(Positive (1), Ne Institutional Constraints	utral (0), Nega Impacts on Water Resources	ative (-1)) Impacts on Agricultural Resources	Impacts to Recreation	Impacts on Other Management Strategies	Total of Screening Factors	Quantified Environmental In
	Alternative Groundwater Importation (HCPUA	Durda	Wilcox aquifer in Gonzales County (Region L) through a pipeline. Buda portion. Alternative version assumes volume available without MAG	Vez	651 400 540	¢7 000 005	64.004	4.400	0000	O allana da	Ne				0	0								Des Desire I Dise
21	Saline Edwards ASR 4 Project	Buda	Non-drought year available freshwater Edwards BFZ aquifer volume will be stored in the Edwards BFZ (Saline Zone). In times of drought, water will be pumped, treated, and piped to users within the BSEACD district.	Yes	\$7,500,000	\$1,015,000) \$2,031	4,426 ·	2030	Colorado	No	-1 (0	0	1	0	0	0	1	0	0	0	0	See Region L Plan Using up to 700 AFY of water from the Si allow the same volume to remain in the f during drier times. During average raintal may decrease springflow by removing an ft/yr
21	Edwards / Middle Trinity 5 ASR Project	Buda	BFZ aquifer volume will be stored in the Trinity aquifer. In times of drought, water will be pumped, treated, and piped to users within the BSEACD district.	Yes	\$6,818,182	\$734,266	\$ \$801	600 :	2030	Colorado	No	0 0	0	1	0	0	0	0	1	0	0	0	2	During average rainfall, the strategy may springflow by removing up to an additiona
21	Groundwater Importation 6 (Hays County Pipeline)	County-Other, Hays County	Importation of groundwater from the Carrizo- Wilcox aquifer in Gonzales County (Region L) through a pipeline. Region L pipeline runs from delivery point near Kyle to the Wimberley area in Hays County. Region K pipeline will run from a to be-determined connection point along the pipeline to the Dripping Springs area. Alternative version would use Forestar water (Region G Lee County Carrizo-Wilcox) as the source.	Yes	\$12,257,000	\$1,507,000) \$754	2,000	2030	Colorado	No	0 0	0	-1	0	0	-1	0	0	0	0	0	-2	Negligible
21	Alternative Groundwater Importation (Hays County 7 Pipeline)	County-Other, Hays County	Region L pipeline runs from delivery point near Kyle to the Wimberley area in Hays County. Region K pipeline will run from a to-be-determined connection point along the pipeline to the Dripping Springs area. Alternative version would use Forestar water (Region G Lee County Carrizo-	- Yes	\$12,257,000	\$1,507,000) \$754	2,000	2030	Colorado	No	0 0	0	-1	0	0	-1	0	0	0	0	0	-2	Negligible
21	Saline Edwards ASR 8 Project	County-Other, Hays County	Non-drought year available freshwater Edwards BFZ aquifer volume will be stored in the Edwards BFZ (Saline Zone). In times of drought, water will be pumped, treated, and piped to users within the BSEACD district.	Yes	\$3,000,000	\$406,000) \$2,031	200 :	2030	Colorado	No	-1 (0	0	1	0	0	0	1	0	0	0	0	Using up to 700 AFY of water from the Si allow the same volume to remain in the fr during drier times. During average rainfa springflow by removing an additional 300
21	Edwards / Middle Trinity 9 ASR Project	County-Other, Hays County	Non-drought year available freshwater Edwards BFZ aquifer volume will be stored in the Trinity aquifer. In times of drought, water will be pumped, treated, and piped to users within the BSEACD district.	Yes	\$2,272,727	\$244,755	5 \$801	200	2030	Colorado	No	0 0	0	1	0	0	0	0	1	0	0	0	2	During average rainfall, the strategy may springflow by removing up to an additiona
22	0 Brush Control	County-Other, Hays County	Removal of brush to increase recharge and runoff. Firm yield determined from Pedemales River Watershed Feasibility Study.	Yes	\$2,137,000	\$213,700) \$500	425	2020	Colorado	No	0 -	1	1	0	1	0	0	0	0	0	0	1	Potential increases to streamflow of up to
22	1 Water Purchase	Dripping Springs	Water purchase from Dripping Springs WSC Wilcox aquifer in Gonzales County (Region L) through a pipeline. Region L pipeline runs from	Yes	\$0	\$0) \$0	432 :	2030	Colorado	No	1 1	1	1	0	0	1	1	0	0	0	0	5	None
22	2 (Hays County Pipeline)	Dripping Springs WSC	Hays County. Region K pipeline will run from a to- Region L pipeline runs from delivery point near Kyle to the Wimberley area in Hays County.	Yes	\$6,128,500	\$753,500	\$754	1,000	2030	Colorado	No	0 0	0	-1	0	0	-1	0	0	0	0	0	-2	Negligible
22	Importation (Hays County 3 Pipeline)	Dripping Springs WSC	Region K pipeline will run from a to-be-determined connection point along the pipeline to the Water purchase from GBRA to meet needs in	i Yes	\$6,128,500	\$753,500	\$754	1,000	2030	Colorado	No	0 0	0	-1	0	0	-1	0	0	0	0	0	-2	Negligible
22	4 Water Purchase Groundwater Importation 5 (Hays County Pipeline)	Goforth SUD West Travis County PUA	Hays and Travis counties Wilcox aquifer in Gonzales County (Region L) through a pipeline. Region L pipeline runs from delivery point near Kyle to the Wimberley area in Hays County. Region K pipeline will run from a to-	Yes - Yes	\$9,600	\$9,600 \$753,500	0 \$200 0 \$754	48 :	2070	Colorado	No	0 0	0	-1	0	0	-1	0	0	0	0	0	-2	None
22	Alternative Groundwater Importation (Hays County 6 Pipeline)	West Travis County PUA	Region L pipeline runs from delivery point near Kyle to the Wimberley area in Hays County. Region K pipeline will run from a to-be-determined	Yes	\$6,128,500	\$753,500) \$754	1,000	2030	Colorado	No	0 0	0	-1	0	0	-1	0	0	0	0	0	-2	Negligible
22	LCRA Contract 7 Amendment	West Travis County PUA	Amend existing contract with LCRA for additional supply for Hays and Travis counties	Yes	\$151,000	\$151,000) \$151	1,000	2030	Colorado	No	1 1	1	1	0	0	0	0	0	0	-1	0	2	Individual WUG implementation has negl the region, but full regional implementatic up to 70,000 AFY from the Highland Lake proposed LCRA reservoirs. Approximate would provide additional instream flows fi point down to Matagorda County.
22	Expansion of 8 Groundwater Supply	Mining, Hays County	Expand use of Trinity aquifer in Colorado Basin of Hays County	Yes	\$4,652,000	\$457,000) \$436	1,047	2020	Colorado	No	1 -	1	1	0	0	0	0	0	0	0	0	1	Water supply is within the MAG, so drawd aquifer could be up to 30 feet. Assume within the stated available yield should re impacts to springflows, but aquifer levels should be monitored.
22	Edwards / Middle Trinity 9 ASR Project	Mining, Hays County	Non-drought year available freshwater Edwards BFZ aquifer volume will be stored in the Trinity aquifer. In times of drought, water will be pumped, treated, and piped to users within the BSEACD district.	Yes	\$1,136,364	\$122,378	3 \$801	100 :	2030	Colorado	No	0 0	0	1	0	0	0	0	1	0	0	0	2	During average rainfall, the strategy may springflow by removing up to an additiona
23	0 Water Purchase	Mining, Hays County	Water purchase (reuse water) from Buda Removal of brush to increase recharge and	Yes	\$100,000	\$100,000	\$200	500	2040	Colorado	No	1 1	1	1	0	0	0	0	1	0	0	0	4	None
23	1 Brush Control	County-Other, Llano County	runoff. Firm yield determined from Pedemales River Watershed Feasibility Study.	No	\$2,137,000	\$213,700	\$500	425	2020	Colorado	No	0 -	1	1	0	1	0	0	0	0	0	0	1	Potential increases to streamflow of up to
23	2 Reuse (Direct) Development of New 3 Groundwater Supply	Llano	Direct reuse of wastewater effluent. Develop a new supply of groundwater in the Hickory aquifer in the Colorado Basin of Llano County	Yes	\$689,000 \$2,743,000	\$66,000 \$254,000) \$660) \$1,270	200	2020	Colorado Colorado	No	-1 1	1	1	0	0	0	0	0	0	-1	0	2	Negligible Water supply is within the MAG, so drawd aquifer could be up to 7 feet, relative to Assume that using water within the stated should result in negligible impacts to spiri aquifer levels and springflows should be r
23	STPNOC Alternate Canal 4 Delivery	Steam-Electric, Matagorda County	Divert available Garwood water during winter months through irrigation canal system upstream of Bay City Dam. Pipeline from canal to reservoir.	Yes	\$7,669,000	\$2,593,000) \$204	12,727	2020	Colorado	No	1 1	1	1	0	0	0	0	0	0	-1	0	2	Negligible
23	LCRA Contract	Steam-Electric, Matagorda County		Yes	\$1,510,000	\$1,510,000) \$151	10,000	2020	Colorado	Νο	1 1	1	1	0	0	0	0	0	0	-1	0	2	Individual WUG implementation has negl the region, but full regional implementatio up to 70,000 AFY from the Highland Lake proposed LCRA reservoirs. Approximate would provide additional instream flows fi point down to Matagorda County.

Lower Colorado Regional Water Planning Group

npacts	Quantified Agriculture Impacts
	Negligible
aline Zone may reshwater zone all, the strategy additional 300 ac-	Negligible
decrease al 1,140 ac-ft/yr	Negligible
	Negligible
	Negligible
aline Zone may reshwater zone II, may decrease I ac-ft/yr	Negligible
decrease al 1,140 ac-ft/yr	Negligible
0 425 AFY	Negligible
	None
	Negligible
	Negligible
	Negligible
	Negligible
Igible Impacts to on could remove es or other Ily 23,000 AFY rom the release	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.
down in the that using water esult in negligible and springflows	Additional drawdown is likely to have negligible impacts to agriculture in this area.
decrease	No 17 - 17 - 17
al 1,140 ac-tt/yr	None
0 425 AFY	Negligible
down in the 2010 conditions. d available yield ngflows, but monitored.	None
	Negligible
igible impacts to on could remove es or other ly 23,000 AFY rom the release	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.

	Water Management	Water Hear Crown or	Strategy Depariation	Addressing	Total Strategy	Annual	Control	Max	Starting	Basin	Interheein	Cont	Viold	Logation	Water	Screening	Matrix Factors	s (Positive (1), N	eutral (0), Ne	gative (-1))	Imposto to	Imposto en	Total of	Quantified Environmental Im
	Strategy	Wholesale Provider	Strategy Description	a Need?	Cost (\$)	Strategy Cost	Water (\$/ac-ft)	Yield (ac-ft/yr)	Decade	Dasin	Transfer (Yes/No)	COSI	Tiela	Location	Quality	and Natural Resources	Preference	Constraints	Water Resource	Agricultura Resources	Recreation	Other Management Strategies	Screening Factors	Quantined Environmental in
						(\$)																onatogics		
23	STPNOC Brackish Surface	Steam-Electric, Matagorda County	Under emergency conditions, the TCEQ can approve STPNOC to pump brackish surface water to blend with the freshwater in their reservoir	Yes	\$0	s) \$(3.000	2020	Colorado	No	1	1	1	0	0	1	0	0	0	0	0	4	None
			Removal of brush to increase recharge and													-		-						
23	Brush Control	County-Other, Mills County	runoff. Firm yield determined from Pedernales River Watershed Feasibility Study.	No	\$2,137,000	\$213,700	\$500	0 425	2020	Colorado	No	0	-1	1	0	1	0	0	0	0	0	0	1	Potential increases to streamflow of up to
																								Water supply is within the MAG, so drawd
	Expansion of		Expand use of Trinity aquifer in Colorado Basin of																					within the stated available yield should res impacts to springflows, but aquifer levels a
24	40 Groundwater Supply	Irrigation, Mills County	Mills County Removal of brush to increase recharge and	Yes	\$8,289,000	\$777,000	\$1,619	9 480	2020	Brazos	No	-1	1	1	0	0	0	1	0	0	0	0	2	should be monitored.
24	I Brush Control	County-Other, San Saba County	runoff. Firm yield determined from Pedernales River Watershed Feasibility Study.	No	\$2,137,000	\$213,700	\$500	0 425	2020	Colorado	No	0	-1	1	0	1	0	0	0	0	0	0	1	Potential increases to streamflow of up to
			Purchase additional water from West Travis																					
24	42 Water Purchase	BEE CAVE VILLAGE	County PUA. Removal of brush to increase recharge and	Yes	\$0	\$0	D \$0	0 800	2020	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	None
24	43 Brush Control	County-Other, Travis County	runoff. Firm yield determined from Pedernales River Watershed Feasibility Study.	No	\$2,137,000	\$213,700	\$500	0 425	2020	Colorado	No	0	-1	1	0	1	0	0	0	0	0	0	1	Potential increases to streamflow of up to
			Non-drought year available freshwater Edwards																					
	Salina Edwards ASP		BFZ aquifer volume will be stored in the Edwards BFZ (Saline Zone). In times of drought, water will be pumped treated and pixed to users within the																					Using up to 700 AFY of water from the Sa allow the same volume to remain in the fre during drive times. During average rainfal
24	44 Project	Creedmoor-Maha WSC	BSEACD district.	Yes	\$4,500,000	\$609,000	\$2,031	1 300	2030	Colorado	No	-1	0	0	1	0	0	0	1	0	0	0	0	springflow by removing an additional 300
																								Individual WUG implementation has neglig
24	15 New LCRA Contract	Creedmoor-Maha WSC	Once contract with City of Austin ends, contract with LCRA for water.	Yes	\$60,400	\$60,400	\$151	1 400	2030	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	the region, but full regional implementatio up to 28,000 AFY from the Highland Lake
																								the region, but full regional implementatio up to 70,000 AFY from the Highland Lake
24	LCRA Contract	LAKEWAY	Amend existing contract with LCRA for additional supply	Yes	\$226,500	\$226.500	D \$151	1 1.500	2020	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	would provide additional instream flows fr point down to Matagorda County.
24	17 Water Purchase		Purchase additional water from Travis County	Vec	\$0	() () ()		1,000	2020	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	None
-		E at E to the		100	ţ,		Ç.	1,000	2020	Colorado	110					Ū		Ŭ		Ū				Water supply is within the MAG, so drawd
																								aquifer could be up to 124 feet, dependin formation. Assume that using water with
	Expansion of		Expand use of Trinity aquifer in Colorado Basin of	Voc	\$2.085.000	¢295.000	D \$570	500	2020	Colorado	No	0		4	0	0	0		0	0	0	0	2	available yield should result in negligible in springflows, but aquifer levels and springflows
24	48 Groundwater Supply			163	\$2,985,000	\$265,000	5 \$570	500	2020	Colorado	NO	0		1	0	0	0	1	0	0	0	0	3	
																								aquifer could be up to 124 feet, dependir formation. Assume that using water with
	Expansion of		Expand use of Trinity aquifer in Colorado Basin of																					available yield should result in negligible in springflows, but aquifer levels and springf
24	49 Groundwater Supply	Manor	Travis County	Yes	\$3,442,000	\$327,000	\$545	5 600	2030	Colorado	No	0	1	1	0	0	0	1	0	0	0	0	3	monitored.
25	Water Burchase	Manor	Purchase additional water from Manville WSC	Voc	\$900,000	\$000.000	n \$000	1.000	2050	Colorado	No	0	1	1	0	0	0	0	0	0	1	0	1	None
20	water Furchase	Manor	Purchase additional water from Marivine WSC.	Tes	\$900,000	\$900,000	5 \$900	1,000	2050	Colorado	INU	0		1	0	0	0	0	0	0	-1	0		None
25	1 New LCRA Contract	Manville WSC	Once contract with City of Austin ends, contract with LCRA for water.	Yes	\$226 500	\$226 500	5151	1 1 500	2060	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	Individual WUG implementation has negli- the region, but full regional implementatio up to 28,000 AFY from the Highland Lake
2.0					\$220,000	Q220,000	¢101	1,000	2000							Ū		Ŭ		Ū				Water supply is within the MAG, so drawd
																								aquifer could be up to 124 feet, dependin formation. Assume that using water within
25	Expansion of 52 Groundwater Supply	Manville WSC	Expand use of Trinity aquifer in Colorado Basin of Travis County	Yes	\$5,431,000	\$537,000	\$537	7 1,000	2050	Colorado	No	0	1	1	0	0	0	1	0	0	0	0	3	springflows, but aquifer levels and springf monitored.
0.0	C Bauca (Direct)	Dflugenille	Direct rouge of westswater offluent	Yee	\$7.050.000	¢011.000		4 000	2020	Colorado	No			4	0		0	0	1	0	4	1	4	Lis to 4,000 AEV discharge reduction to C
25	33 Reuse (Direct)	Phugerville	Direct reuse of wastewater emuent.	res	\$7,959,000	\$911,000	5228	5 4,000	2020	Colorado	INO	1	0	1	0	1	0	0	1	0	-1	1	4	Individual WUG implementation has neglig
																								the region, but full regional implementatio up to 70,000 AFY from the Highland Lake proposed LCRA reservoirs. Approximately
25	LCRA Contract Amendment	Pflugerville	Amend existing contract with LCRA for additional supply	Yes	\$906,000	\$906,000	\$151	1 6,000	2050	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	would provide additional instream flows fr point down to Matagorda County.
																								Water supply is within the MAG, so spring
	Expansion of		Expand use of Edwards BFZ aquifer in Colorado																					that using water within the stated available result in negligible impacts to springflows,
25	55 Groundwater Supply	Pflugerville	Basin of Travis County	Yes	\$3,729,000	\$371,000	\$371	1 1,000	2040	Colorado	No	1	1	1	0	0	0	1	0	0	0	0	4	levels and springflows should be monitore Individual WUG implementation has neglig
																								up to 70,000 AFY from the Highland Lake proposed LCRA reservoirs. Approximately
25	LCRA Contract 66 Amendment	POINT VENTURE	Amend existing contract with LCRA for additional supply	Yes	\$15,100	\$15,100	5 \$151	1 100	2050	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	would provide additional instream flows fr point down to Matagorda County.
																								Individual WUG implementation has neglig
																								up to 70,000 AFY from the Highland Lake proposed LCRA reservoirs. Approximately
25	LCRA Contract Amendment	ROLLINGWOOD	Amend existing contract with LCRA for additional supply	Yes	\$45,300	\$45,300	\$151	1 300	2030	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	would provide additional instream flows from point down to Matagorda County.
			Non-drought year available freshwater Edwards																					
	Edwards / Middle Trinitv		aquifer. In times of drought, water will be pumped, treated, and piped to users within the																					During average rainfall, the strategy may
25	58 ASR Project	Sunset Valley	BSEACD district.	Yes	\$2,272,727	\$244,755	5 \$801	1 200	2030	Colorado	No	0	0	1	0	0	0	0	1	0	0	0	2	springflow by removing up to an additiona
			Once contract with City of Austin ends, contract																					Individual WUG implementation has neglig
25	59 New LCRA Contract	Sunset Valley	with LCRA for water.	Yes	\$75,500	\$75,500	\$151	1 500	2030	Colorado	No	1	1	1	0	0	0	0	0	0	-1	0	2	up to 28,000 AFY from the Highland Lake

npacts	Quantified Agriculture Impacts
	None
9 425 AFY	Negligible
down in the that using water	
and springflows	Positive impact of 480 ac-ft/yr of water for irrigation.
0 425 AFY	Negligible
	None
0 425 AFY	Negligible
aline Zone may reshwater zone III, may decrease	
) ac-ft/yr	Negligible
igible impacts to on could remove es.	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.
on could remove es or other ly 23,000 AFY from the release	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.
	None
down in the ng on the nin the stated impacts to flows should be	
	Negligible
down in the ng on the hin the stated impacts to flows should be	
	Negligible
	None
igible impacts to on could remove es.	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.
down in the ng on the nin the stated impacts to	
flows should be	Negligible
Gilleland Creek.	None
on could remove es or other ly 23,000 AFY rom the release	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available
g/streamflow onth. Assume	interruptible water to 0 AFY.
e yield should b, but aquifer ed. igible impacts to	Negligible
on could remove es or other ly 23,000 AFY rom the release	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available intermetible unders to 0.2000
igible impacts to on could remove	interruptible water to U AFY.
ly 23,000 AFY rom the release	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.
dearer	
al 1,140 ac-ft/yr	Negligible
igible impacts to on could remove es.	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AFY.

		Weter Harry Groups and	Otanta an Description	Addressing	Tatal Otractory	A	Control (Na	Deale	Interlegia	O and Mint	d I a series		Screening M	atrix Factors	Positive (1), Ne	eutral (0), Nega	ative (-1))	l les sonte de	Incore to an	Total of		
	Strategy	Wholesale Provider	Strategy Description	a Need?	Cost	Strategy	Water (\$/ac-ft)	Yield E	Decade	Dasin	Transfer	COSL THE	u Locatio	Quality	and Natural	Preference	Constraints	Water	Agricultural	Recreation	Other	Screening	Quantineu Environmentar impacts	Quantineu Agriculture Impacis
					(•)	(\$)	(4/40/11)	(40 14).)			(100,110)				noodalooo			noodulood	noodulooo		Strategies	. untere		
																							Water supply is within the MAG, so drawdown in the aquifer could be up to 30 feet. Assume that using water	
	Development of New		Develop a new supply of groundwater in the Trinity aquifer in the Colorado Basin of Travis																				within the stated available yield should result in negligible impacts to springflows, but aquifer levels and springflows	
260	Groundwater Supply	Sunset Valley	County	Yes	\$2,228,000	\$207,000	\$1,035	200	2040	Colorado	No	-1 1	1	0	0	0	1	0	0	0	0	2	should be monitored.	Negligible
																							Individual WUG implementation has negligible impacts to	Increases in firm municipal and industrial contracts
261	New LCRA Contract	Travis County WCID #10	Once contract with City of Austin ends, contract with LCRA for water.	Yes	\$302,000	\$302,000	\$151	2,000	2030	Colorado	No	1 1	1	0	0	0	0	0	0	-1	0	2	the region, but full regional implementation could remove up to 28,000 AFY from the Highland Lakes.	over time will eventually reduce the amount of available interruptible water to 0 AFY.
																							Individual WUG implementation has negligible impacts to the region, but full regional implementation could remove	
																							up to 70,000 AFY from the Highland Lakes or other proposed LCRA reservoirs. Approximately 23,000 AFY	Increases in firm municipal and industrial contracts
262	LCRA Contract Amendment	Travis County WCID #17	Amend existing contract with LCRA for additional supply	Yes	\$151,000	\$151,000	\$151	1,000	2020	Colorado	No	1 1	1	0	0	0	0	0	0	-1	0	2	would provide additional instream flows from the release point down to Matagorda County.	over time will eventually reduce the amount of available interruptible water to 0 AFY.
			Construct intake from Lake Travis, transmission																				Individual WUG implementation has negligible impacts to	Increases in firm municipal and industrial contracts
263	New LCRA Contract (with construction)	VOLENTE	line, and treatment plant. Contract with LCRA for surface water.	Yes	\$8,263,000	\$1,064,000	\$7,493	146	2020	Colorado	No	-1 1	1	0	0	0	-1	0	0	-1	0	-1	the region, but full regional implementation could remove up to 28,000 AFY from the Highland Lakes.	over time will eventually reduce the amount of available interruptible water to 0 AFY.
	New I CB & Contract	West Lake Hills	Once contract with City of Austin ends, contract	Vaa	\$106 200	£106 200	\$151	1 200	2020	Colorado	No			0	0	0	0	0	0	1	0	2	the region, but full regional implementation could remove up to 20 000 AEV from the Highland Lakes	Increases in firm municipal and industrial contracts over time will eventually reduce the amount of available interruptible water to 0 AEV.
204	New LCRA Contract		with ECKA for water.	Tes	\$196,300	\$190,300	5 5151	1,300	2030	Colorado	INO	1 1		0	0	0	0	0	0	-1	0	2	up to 28,000 AFT from the highland Lakes.	
		Steam-Electric Travis																					Plan discussion provides quantification related to return	Plan discussion provides quantification related to return
265	COA Direct Reuse	County	Direct reuse of wastewater effluent.	Yes	\$129,996,000 \$	\$12,202,000	\$1,162	10,500	2020	Colorado	No	-1 1	1	1	1	0	0	1	-1	0	0	3	flows.	flows.
266	Development of New Groundwater Supply	Steam-Electric, Wharton County	Develop new wellfield in the Gulf Coast Aquifer in the Brazos-Colorado Basin of Wharton County	Yes	\$2,237,000	\$207,000	\$1,035	200	2050	Brazos- Colorado	No	-1 0	1	0	0	0	0	0	0	0	0	0	Negligible	Negligible
	LCRA - Off-Channel		· · · · · · · · · · · · · · · · · · ·																				Could potentially remove up to 90,000 ac-ft from the	Could potentially make available up to 54,000 ac-ft/yr of water for agriculture purposes, dependent on needs
267	Reservoir(s)	LCRA	Lane City off-channel reservoir	Yes	\$211,200,000 \$	\$19,520,000	\$217	90,000	2020	Colorado	No	1 1	1	0	-1	1	0	1	1	1	0	6	Colorado River, but will create additional waterfowl habitat.	of firm customers. Could potentially make available up to 18,000 ac-ft/yr
268	LCRA - Off-Channel Reservoir(s)	LCRA	Off-Channel reservoir (Prairie Site) using diversions from existing LCRA water rights	Yes	\$376,000,000 \$	\$27,805,000	\$1,545	18,000	2020	Colorado	No	-1 0	1	0	-1	0	0	1	1	1	0	2	Could potentially remove up to 18,000 ac-ft from the Colorado River, but will create additional waterfowl habitat.	of water for agriculture purposes, dependent on needs of firm customers.
	LCRA - Off-Channel		Off-Channel reservoir (Mid Basin Site) using																				Could potentially remove up to 18,000 ac-ft from the	Could potentially make available up to 18,000 ac-ft/yr of water for agriculture purposes, dependent on needs
269	Reservoir(s)	LCRA	diversions from existing LCRA water rights	Yes	\$298,000,000 \$	\$22,089,000	\$1,227	18,000	2020	Colorado	No	-1 0	1	0	-1	0	0	1	1	1	0	2	Colorado River, but will create additional watertowl habitat.	of firm customers. Could potentially make available up to 16,691 ac-ft/yr
270	Reservoir(s)	LCRA	Condensate Contractions from LCRA's Excess Flows permit	Yes	\$298,000,000	\$22,065,000	\$1,446	16,691	2020	Colorado	No	-1 0	1	0	-1	0	0	1	1	1	0	2	Colorado River, but will create additional waterfowl habitat.	of water for agriculture purposes, dependent on needs of firm customers.
271	Enhanced Municipal and	LCRA	and Industrial water use through development of LCRA customer savings by incorporating	Yes	\$64.099.000	\$5 634 000	5268	20.000	2020	Colorado	No	1 0	1	0	0	1	0	1	0	0	0	4	Negligible, as impacts have already been accounted for in individual WIIG strategies	Negligihle
2.1.1			Lord Codemor Carrigo Dy moniporating	100	¢01,000,000	<i>40,001,000</i>	\$ \$200	20,000	2020	Colorado	110													rogiguo
070	Alternative - Import Return Flows from	LODA	Return flows from Brazos River basin to Colorado	Vee	CO 4 000 000	¢0.000.000		05.000	0000	Colorado	Vee				0	0							Increase streamflow in Colorado River Basin by up to 25,000 acre-feet/year, while decreasing the streamflow in the Brease Diverse Decis by the serve acreated	Add "by up to 25,000 core fact " to discussion
272	Alternative - Supplement	LURA	basin through transmission of WWTP emuent	res	\$64,800,000	\$6,200,000	5248	25,000	2020	Colorado	res	1 0	1	0	0	0	-1	1	1	1	-1	3	the Brazos River Basin by the same amount.	Add by up to 25,000 acre-reet. to discussion
	Bay and Estuary Inflows with Brackish		Brackish groundwater delivery to the Bay to achieve the same effect as volume of released																				Instream flow from Highland Lakes to Matagorda Bay could be decreased by up to 12,000 acre-feet if B&E needs	
273	Groundwater	LCRA	stored water from Highland Lakes	Yes	\$40,500,000	\$6,350,000	\$529	12,000	2020	Matagorda	No	0 0	0	-1	-1	0	-1	0	0	1	0	-2	are met through this strategy.	Add "by up to 12,000 acre-feet." to discussion Could potentially make available up to 18.000 ac-ft/yr
274	Alternative - Baylor Creek Reservoir	LCRA	Reservoir (Baylor Creek) using diversions from existing LCRA water rights	Yes	\$179.000.000 \$	\$16.200.000	\$900	18.000	2040	Colorado	No	0 0	1	0	-1	0	0	1	1	1	0	3	Could potentially remove up to 18,000 ac-ft from the Colorado River, but will create additional waterfowl habitat.	of water for agriculture purposes, dependent on needs of firm customers.
2.11					¢110,000,000 ¢	<i>p</i> 10,200,000	\$000	10,000	2010			0 0												
																							Water supply is within the MAG, so drawdown in the	
	Development of New		Develop a new supply of groundwater in the Gulf																				Aquiter could be up to 12 feet, relative to 1999 conditions. Assume that using water within the stated available yield about the product a participate to approximate the stated available yield	
275	FPP Onsite	LCRA	County	Yes	\$2,749,000	\$347,000	\$496	700	2020	Colorado	No	1 1	1	0	0	0	0	1	0	0	0	4	aquifer levels and springflows should be monitored.	None
070	Groundwater Supply -	LODA	Develop a new supply of groundwater in the Carrizo-Wilcox aquifer and Yegua-Jackson aquifer	r Vee	\$00 407 000	£0.700.000		0.500	0000	Colorado	No				0	0					0		aquifer could be up to 75 feet. Assume that using water within the stated available yield should result in negligible	Nore
276		LURA	Financial Constraint of Payette County	Tes	\$20,107,000	\$2,782,000	51,113	2,500	2020	Colorado	INO	-1 1	0	0	0	0	0	1	0	0	0	1	formation, drawdown in the aquifer could be up to 237 feet.	None
277	Groundwater	LCRA	Expand use of Carrizo-Wilcox aquirer in Colorado Basin of Bastrop County	Yes	\$4,564,000	\$455,000	\$1,517	300	2020	Colorado	No	-1 0	1	0	0	0	0	0	0	0	0	0	Assume that using water within the stated available yield should result in negligible impacts to springflows, but	None
	Alternative - Brackish		Extracting and treating brackish groundwater from the Gulf Coast aguifer in Matagorda County for																				Add discussion of how using local groundwater could reduce the amount of water released from Highland Lakes	
278	Groundwater Desalination	LCRA	use in the Bay City area	Yes	\$277,006,000 \$	\$43,180,000	\$1,035	22,400	2040	Colorado	No	-1 1	0	0	0	0	-1	0	0	0	0	-1	that provides instream flows, up to 22,400 ac-ft/yr.	Add "of up to 22,400 ac-ft/yr" to discussion
279	Aquifer Storage and Recovery	LCRA	Surface water from the Colorado River is diverted to aquifer storage for later recovery	Yes	\$39,590,000	\$5,430,000	\$1,076	5,048	2040	Colorado	No	-1 1	1	0	0	0	0	0	0	0	0	1	Quantified impacts provided in Appendix 5D	Add "of up to 5,048 ac-ft/yr" to discussion
280	Enhanced Recharge and Conjunctive Use	LCRA	Surface water from the Colorado River is diverted to recharge basins	Yes	\$53,504,000	\$8,335,000	\$834	10,000	2020	Colorado	No	0 1	1	0	0	0	0	0	1	0	0	3	Could potentially reduce pulse flows in the Colorado River by up to 10,000 ac-ft/yr	Add "of up to 10,000 acre-feet/year" to discussion
			Import aroundwater from outside of region																					
281	Alternative - Groundwater	LCRA	(assume Carrizo-Wilcox aquifer water from Burleson County).	Yes	\$614,790,000 \$	\$51.445.000	\$1.470	35.000	2040	N/A	No	-1 0	-1	0	0	0	0	0	0	0	0	-2	Add "of up to 21,000 ac-ft/yr" to discussion	Add "of up to 35,000 ac-ft/yr" to discussion
																		-		-				
282	Amendments to Water Rights	LCRA	Amend run-of-river water rights for additional diversion locations and storage rights	Yes	\$0	\$0	\$0	N/A	2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	Negligible. Impacts are captured under individual reservoir strategies.	No impacts are anticipated based on projected water demands.
283	Acquire Additional Water Rights	LCRA	Purchase of water rights owned by others in the basin.	Yes	\$125,000	\$125,000	\$500	250	2020	Colorado	No	1 0	1	0	0	0	0	0	0	0	0	2	Add "by up to 250 acre-feet/year" to discussion	Add "of up to 250 acre-feet/year" to discussion
	LCRA Water Management		See Detential Strategy #107	Vea		1/4	NI/A	N/A	/A	N1/A	NI/A		N1/6	N1/6	N/A	NIA	NIA	51/4	N/A	N//A	N/A	NI/A	NVA	N/A
284	Fian Amenaments	LURA	See Folential Strategy #197	res	N/A N	N/A	N/A	n/A N/	/A	IN/A	IN/A	nva N/A	IN/A	IN/A	IN/A	IN/A	N/A	IN/A	N/A	N/A	IN/A	IN/A		IW/A
285	Downstream Return Flows	LCRA	Return flows from Pflugerville to Colorado River	Yes	\$0	\$0	\$0	10,453	2020	Colorado	No	1 0	1	0	1	0	0	1	0	0	0	4	Add "of up to 10,453 acre-feet/year" to discussion	Negligible
	Return Flows/Indirect	0.000	Deturn flour from Official and a state						00000	0-1 ·	Ne			_					-		-			
286	Keuse	LCRA/COA	Return flows from City of Austin to Colorado River	Yes	\$0	\$0	\$0	61,444	2020	Colorado	No	1 0	1	0	1	0	0	1	0	0	0	4	Quantification addressed in text	Quantification addressed in text
			Reduction in both per capita consumption and			. .																	Could leave up to 37,000 ac-ft of water in the lakes and	
287	COA Conservation	AUSTIN	peak day to average day demand ratio	Yes	\$41,434,437	\$7,855,398	\$342.00	36,899	2020	Colorado	No	1 0	1	0	0	0	0	1	0	0	0	3	aquifers.	Negligible

														Screen	ing Matrix Facto	ors (Positive (1), N	leutral (0), Neg	gative (-1))					
Water Management	Water User Group or	Strategy Description	Addressing	Total Strategy	Annual	Cost of	Max	Starting	g Basin	Interbasin	Cost	Yield Lo	ocation	Water Environme	ental Local	Institutional	Impacts on	Impacts on	Impacts to	Impacts on	Total of	Quantified Environmental Impacts	Quantified Agriculture Impacts
Strategy	Wholesale Provider		a Need?	Cost	Strategy	Water	Yield	Decade	e	Transfer				Quality and Natu	Iral Preferen	ce Constraints	Water	Agricultural	Recreation	Other	Screening		
				(\$)	Cost	(\$/ac-ft)	(ac-ft/yr)		(Yes/No)				Resourc	es		Resources	Resources		Management	Factors		
					(\$)					-										Strategies			
		Direct reuse of wastewater effluent for municipal																				Plan discussion provides quantification related to return	Plan discussion provides quantification related to return
288 COA Direct Reuse	AUSTIN	and manufacturing purposes	Yes	\$346,037,000	\$32,453,700	\$1,162	2 27,929	2020	Colorado	No	-1	1	1	1 1	0	0	1	-1	0	0	3	flows.	flows.
000 COA Other Beuge		Depentrolized expects and arey water use	Vaa	\$21 772 000	\$2 067 000	61.00	2 2 000	2020	Colorado	No	1	4	4		0	0	1	4	0	0	2	None	None
289 COA Other Reuse	AUSTIN	Decentralized concepts and gray water use.	Tes	\$21,772,000	53,067,000	\$1,022	2 3,000	2020	Colorado	INU	-1		1	1 1	0	U	-	-1	0	U	3	None	None
Longhorn Dam		Automating knife gates to control flow passing																					
290 Operations Improvement	S AUSTIN	below the gate	Yes	\$1,036,000	\$87,000	\$29	9 3,000	2020	Colorado	No	1	1	1	0 0	1	0	0	0	0	0	4	None	None
Increased Use of Long		Allow more fluctuation in lake level and operate as	5																				
291 Lake Storage	AUSTIN	an off-channel reservoir	Yes	\$28,219,000	\$3,744,500	\$18	7 20,000	2020	Colorado	No	1	0	0	0 1	0	0	1	0	0	0	3	Refer to Direct Reuse discussion quantifying return flows	Negligible
Capture Local Inflows to		Install intake below I om Miller Dam and pumping	Vee	60.040.000	¢007.000		1 1 000		Colorado	No			0				0	0	0	0		N II - II - I	N R-B -
292 Lady Bird Lake	AUSTIN	excess nows to the water treatment plant	res	\$2,949,000	\$297,000	\$29	7 1,000	J 2020	Colorado	INU	1		0	0 0	0	-1	U	U	0	U	1	Inegligible	Negligible
		Using treated effluent or surface water from the																					
Aquifer Storage and		Colorado River is diverted to aquifer storage for																					Refer to Direct Reuse discussion quantifying return
293 Recovery	AUSTIN	later recovery	Yes	\$312,316,000	\$30,185,000	\$604	4 50,000	2020	Colorado	No	0	1	0	0 0	0	-1	0	0	0	0	0	Refer to Direct Reuse discussion quantifying return flows	flows
Indirect Potable Reuse		Conveying WWTP discharge to Lady Bird Lake																					
294 through Lady Bird Lake	AUSTIN	and withdrawing water to be treated at the WTP	Yes	\$41,970,000	\$3,593,000	\$180	0 20,000	2020	Colorado	No	1	1	0	-1 -1	0	-1	0	0	0	0	-1	Refer to Direct Reuse discussion quantifying return flows	None
		Would allow the lake to operate at a vanving lovel																					
205 Lake Austin Operations	AUSTIN	instead of constant in order to capture local flows	Yes	\$0	\$25,000	\$10	2 500	2020	Colorado	No	1	-1	0	0 0	0	0	0	0	-1	0	-1	Negligible	None
233 Ealto Aubtin opprations			100	ψC	φ20,000	φι	2,500	2020	00101000				v	0 0	0	0	Ū	0		Ū		regigible	None
		Development of catchment areas (rooftops) to																					
		capture rainwater for potable or non-potable use.																					
		For potable use, filtration and disinfection																					
296 Rainwater Harvesting	AUSTIN	considerations would apply.	Yes	\$690,167,000	\$57,752,712	\$3,48	7 16,564	4 2020	Colorado	No	-1	0	1	0 0	0	0	0	0	0	0	0	Negligible	Negligible
Alternative - Brackish		Extracting brackish groundwater and delivering to																					
297 Groundwater Desalinatio	AUSTIN	Lake Austin	Yes	\$54,582,000	\$7,613,000	\$1,523	3 5,000	2030	Colorado	NO	-1	1	0	0 0	0	-1	0	0	0	0	-1	Negligible	None
Alternative - Reclaimed																							
Water Bank Infiltration to	• •	Using an infiltration basin to recharge the local																					
298 Colorado Alluvium	AUSTIN	Colorado Alluvium formation	Yes	\$151,800,000	\$12,700,000	\$423	3 30,000	2030	Colorado	No	0	1	0	0 0	0	-1	0	0	0	0	0	Refer to Direct Reuse discussion quantifying return flows	None
		Directly treat reclaimed water for potable use																					
299 Direct Potable Reuse	Buda	within the municipality.	Yes	\$26,779,000	\$2,941,000	\$1,313	3 2,240	2020	Colorado	No	-1	0	1	1 0	1	-1	1	0	0	0	2	Reduction of return flows by up to 2,240 AFY.	Negligible
	Burnet County-Other	Conservation efforts to reach 130 good by 2020																					
300 Municipal Conservation	Brazos Basin	and 125 gpcd by 2030.	Yes	\$164.771	\$23,754	\$396	6 94	1 2020	Brazos	No	1	0	1	0 1	0	1	0	0	0	0	4	Negligible	Negligible
000				¢101,771	¢20,701	<i>\</i>	0 0	. 2020	DIGLOO					· ·			Ű	Ŭ	Ű	Ŭ		rogigible	riographic
201 Bourse (Direct)	MARBLE FALLS	Expansion to direct rouse program	Voc			¢	0 11	2020	Colorado	No	1	0	1	1 0	1	0	0	0	0	0	4	Nogligible	Nogligible
		Expansion to uncer rease program.	103	ψC	,	ψ		2020	00101200	140				1 0		0	Ū	0	0	Ū	-	negligible	regigible
Water Right Permit	Steam-Electric,	Current pending application with TCEQ for																					
302 Amendment	Matagorda County	amendment to existing water right permit	res	\$0	J \$0	20	υ (2020	Colorado	NO	1	0	1	0 0	1	U	0	U	0	0	3	None	None
		opportunties for diversions. Strategy was																					
In-Channel Dams in		considered but later removed from consideration																					
303 Lower Basin	LCRA	by LCRA																				N/A	N/A
		Strategy to expand infrastructure only when																					
		contracts/water rights have already been																					
Surface Water		obtained. Strategy considered but determined to																					
304 Intrastructure Expansion		Hot be fleeded.						_														N/A	N/A
305 HB 1437		Funding Mechanism Only					1	1	_	_	-							-				N/A	N/A
		Adding a biodegradable product to cover the			1	1		1													1		
De dues d'Estre		surface of lakes to reduce water losses due to			1	1		1										1	1				
Reduced Lake		evaporation. Strategy was evaluated but later	Voc	NI/A	\$275 000	¢07/	F 1.000		Colorada	No	4		0	0 1		4	~	~	4	0	2	N/A	N/A
	AUGTIN	removed norm consideration by COA.	163	IN/M	φ∠15,000	\$Z/:	3 1,000	, IN/A	Suluiduu	140		0	U	-1 -1	-1	-1	v	U	-1	v	-3		
		Relocating WWTP effluent discharge upstream of			1	1		1													1		
Move SAR WWTP		river flow gauge to meet environmental flow			1	1		1										1					
discharge above Austin		requirements. Strategy was evaluated but later			1	1		1										1					
307 Gauge	AUSTIN	removed from consideration by COA.	Yes	\$5,217,000	\$555,000	\$555	5 1,000	N/A	Colorado	No	-1	0	0	-1 0	0	-1	0	0	0	0	-3	N/A	N/A

THIS PAGE LEFT BLANK INTENTIONALLY

2016 LCRWPG WATER PLAN

APPENDIX 5B

RECOMMENDED AND ALTERNATIVE WATER MANAGEMENT STRATEGY TABLES

						Water Ma	nagement	Strategies (ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
								1		
		Surplus/(Sho	rtage)		260	234	200	153	89	2
AQUA WSC	BASTROP	BRAZOS	Conservation		6	9	10	11	15	20
AQUA WSC	BASTROP	BRAZOS	Drought Management	15%	14	17	23	30	39	52
Rema	ining Surplus/Sho	ortage after Conser	vation and/or Drought Management		280	260	233	194	143	74
		Surplus/(Sho	utage)		(2 534)	(4.656)	(7 145)	(11 210)	(17 667)	(26 269)
	BASTROP		Conservation		619	895	960	1 128	1 499	1 992
	BASTROP		Drought Management	15%	1 361	1 746	2 258	2 067	3 035	5 277
AQUA VISC Boma	ining Surplus/Sh	COLORADO	Diought Management	15%	(554)	(2.015)	(2 027)	(7 115)	(12 222)	(10,000)
AQUA WSC	BASTROP	COLORADO	Expansion of Groundwater Supply	Carrizo-Wilcox (Brazos Basin)	2,500	2,500	4,000	4,000	4,000	4,000
AQUA WSC	BASTROP	COLORADO	New LCRA Contract	LCRA System	0	0	5,000	5,000	10,000	15,000
		Remaining Surplu	s/Shortage	/	1,946	485	5,073	1,885	1,767	0
						*				
		Surplus/(Sho	vrtage)	-	185	167	143	110	64	4
AQUA WSC	BASTROP	GUADALUPE	Conservation		5	7	8	9	12	14
AQUA WSC	BASTROP	GUADALUPE	Drought Management	15%	10	12	16	21	28	37
Rema	ining Surplus/Sho	ortage after Conser	vation and/or Drought Management		200	186	167	140	104	55
		Surplus/(Sho	vrtage)	-	(30)	(671)	(1,519)	(2,685)	(4,274)	(6,390)
BASTROP	BASTROP	COLORADO	Conservation		195	440	688	1,084	1,459	1,958
BASTROP	BASTROP	COLORADO	Drought Management	15%	294	390	517	692	930	1,248
Rema	ining Surplus/Sho	ortage after Conser	vation and/or Drought Management		459	159	(314)	(909)	(1,885)	(3,184)
BASTROP	BASTROP	COLORADO	Reuse				300	600	1,120	1,120
BASTROP	BASTROP	COLORADO	Development of New Groundwater	Carrizo-Wilcox	300	300	300	300	300	
BASTROP	BASTROP	COLORADO	New LCRA Contract	LCRA System				2,500	2,500	2,500
	- -	Remaining Surplu	s/Shortage		759	459	286	2,491	2,035	436
		Surplus/(Sho	rtage)	1	753	643	541	320	(93)	(644)
BASTROP COUNTY WCID	BASTROP	COLORADO	Drought Management	5%	19	27	38	53	74	102
Rema	ining Surplus/Sho	ortage after Conser	vation and/or Drought Management		772	670	579	373	(19)	(542)
BASTROP COUNTY WCID	BASTROP	COLORADO	Expansion of Groundwater Supply	Carrizo-Wilcox					550	550
		Remaining Surplu	s/Shortage		772	670	579	373	531	8
		Surplue//She	utaga)		07	<u></u>	54	20	20	
			Concervation		67	60	51	38	22	0
	BASTROP	BRAZUS	Conservation Drought Management	150/	1	2	4	/	0	10
COUNTFOTHER Boma	ining Surplus/Sh	DRAZUS	vation and/or Drought Management	15%	4	5 67	61	0 52	10	14
Rema	ining Surplus/Sho	Shage aller Conser	valion and/or brought management		12	07	01	53	40	24
		Surplus/(Sho	ortage)		(361)	(519)	(739)	(907)	(1,158)	(1,490)
COUNTY-OTHER	BASTROP	COLORADO	Conservation		89	191	337	403	515	663
COUNTY-OTHER	BASTROP	COLORADO	Drought Management	15%	272	328	402	504	643	827
Rema	ining Surplus/Sho	ortage after Conser	vation and/or Drought Management		0	0	0	0	0	0
COUNTY-OTHER	BASTROP	COLORADO	Expansion of Groundwater Supply	Carrizo-Wilcox	60	60	60	60	60	-
		Remaining Surplu	s/Shortage		60	60	60	60	60	0

						Water Ma	nagement	Strategies ((ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Surplue//She			0	4	0	4	c	0
	DACTDOD		Concervation		0	1	3	4	6	8
	BASTROP		Drought Management	15%	5	5	5	4	4	4
Rems	pining Surplus/Sho	ortage after Conser	vation and/or Drought Management	1370	2	3	5	3	4	4
Kenna		Shage alter Conser	valion and/or brought management		2	-	U	U	10	12
		Surplus/(Sho	ortage)		16	12	5	0	0	0
CREEDMOOR-MAHA WSC	BASTROP	COLORADO	Drought Management	5%	1	1	2	2	3	4
Rema	aining Surplus/Sho	ortage after Conser	vation and/or Drought Management		17	13	7	2	3	4
	<u> </u>			I			·			
		Surplus/(Sho	ortage)		(472)	(732)	(1,013)	(1,533)	(2,432)	(3,631)
ELGIN	BASTROP	COLORADO	Drought Management	15%	195	248	319	417	552	732
Rema	aining Surplus/Sho	ortage after Conser	vation and/or Drought Management		(277)	(484)	(694)	(1,116)	(1,880)	(2,899)
ELGIN	BASTROP	COLORADO	Expansion of Groundwater Supply	Carrizo-Wilcox	300	300	0	0	0	0
ELGIN	BASTROP	COLORADO	New LCRA Contract	LCRA System		3,500	3,500	3,500	3,500	3,500
ELGIN	BASTROP	COLORADO	Allocate to Travis County portion of Elgin			(48)	(129)	(222)	(304)	(381)
		Remaining Surplu	s/Shortage		23	3,268	2,677	2,162	1,316	220
		Surplus/(Sho	ortage)		0	0	0	0	0	0
POLONIA WSC	BASTROP	COLORADO	Refer to Region L Plan							
		Remaining Surplu	is/Shortage		0	0	0	0	0	0
		Surplus/(Sho	ortage)	1	1,006	932	953	663	70	(721)
SMITHVILLE	BASTROP	COLORADO	Conservation	1-11	44	72	76	88	117	155
SMITHVILLE	BASTROP		Drought Management	15%	126	161	208	273	362	480
Rema	aining Surpius/Sno	ortage after Conser	Vation and/or Drought Management	Owner Oity	1,176	1,165	1,237	1,024	549	(86)
SMITHVILLE	BASTRUP	Domoining Sumplu	Development of New Groundwater	Queen City	4.470	4.405	4 007	4 00 4	5.40	150
<u> </u>		Remaining Surplu	IS/Shonage		1,170	1,165	1,237	1,024	549	64
		Surplue/(Sho	ntade)		(55)	(97)	(120)	(151)	(174)	(100)
	BASTROP		Expansion of Groundwater Supply	Carrizo-Wilcox	(55)	87	(120)	(151)	174	100
	BAOIIROI	Remaining Surplu	s/Shortage		0	0/	0	0	0	100
		rtomaning ourpla	o, en en age		v	v	V	U	U	0
		Surplus/(Sho	ortage)		(173)	(409)	(450)	(496)	(545)	(600)
MINING	BASTROP	BRAZOS	Unmet Needs	3 Oaks Mine	(()	()	(100)	(0.0)	(000)
		Remaining Surplu	s/Shortage		(173)	(409)	(450)	(496)	(545)	(600)
		0 1	5		(()	()	()	(0.07)	()
		Surplue/(She	ntage)		(449)	(3.947)	(4.556)	(5.235)	(5.967)	(6,777)
		Sulpius/(Silo	nage)		(110)	(0,0)	(., / .			
MINING	BASTROP	COLORADO	Unmet Needs	3 Oaks Mine	(110)	(0,0)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

						Water Ma	nagement	Strategies (ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Surplus/(Shc	ortage)		(110)	(306)	(341)	(379)	(420)	(466)
				Carrizo-Wilcox	, , ,					
MINING	BASTROP	GUADALUPE	Development of New Groundwater	(Guadalupe Basin)	0	0	466	466	466	466
MINING	BASTROP	GUADALUPE	Development of New Groundwater	Queen City (Guadalupe Basin)	110	306	0	0	0	0
	ł	Remaining Surplu	is/Shortage		0	0	125	87	46	0
		Shortag	e	-	831	773	740	723	710	702
BLANCO	BLANCO	GUADALUPE	Conservation		19	32	28	26	27	27
BLANCO	BLANCO	GUADALUPE	Drought Management	25%	55	63	68	71	73	74
		Remaining Surplu	is/Shortage		850	805	768	749	737	729
		Shortag			31	(18)	(55)	(79)	(98)	(113)
CANYON LAKE WSC	BI ANCO		Drought Management	15%	19	23	24	25	26	27
	22		Check with Region L	1070						
		Remaining Surplu	is/Shortage		50	5	(31)	(54)	(72)	(86)
		Shortag			120	40	2	(24)	(42)	(55)
COUNTY-OTHER	BI ANCO		Drought Management	15%	86	99	107	111	113	115
COUNTY-OTHER	BLANCO	COLORADO	Expansion of Groundwater Supply	Ellenburger-San Saba			101	55	55	55
COUNTY-OTHER	BLANCO	COLORADO	Expansion of Groundwater Supply	Hickory				55	55	55
COUNTY-OTHER	BLANCO	COLORADO	Brush Control		0	0	0	0	0	0
	•	Remaining Surplu	is/Shortage	·	216	148	109	197	181	170
		Ob a stars			E 4 E	100	45.4	407	100	
			e Drevekt Menegement	450/	545	486	454	437	423	415
COUNTY-OTHER	BLANCO	GUADALUPE Remaining Surplu		15%	803 603	552	/ Z 526	74 511	500	/ 8
		Remaining Surplu	a/ononage		003	555	J20	511	500	433
		Shortag	e		(48)	(105)	(138)	(155)	(167)	(175)
JOHNSON CITY	BLANCO	COLORADO	Conservation		18	30	30	28	26	26
JOHNSON CITY	BLANCO	COLORADO	Drought Management	20%	71	82	89	92	95	96
JOHNSON CITY	BLANCO	COLORADO	Expansion of Groundwater Supply	Ellenburger-San Saba	175	175	175	175	175	175
		Remaining Surplu	s/Shortage		216	182	156	140	129	122

WUG Name Co BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BURNET BURNE BURNET BURNE	River Basin Shortage/S ET BRAZOS ET BRAZOS	Water Management Strategy Name Surplus Conservation Drought Management Expansion of Groundwater Supply Buena Vista Regional Project us/Shortage	Source Name 15% Ellenburger-San Saba (Colorado Basin) LCRA System	2020 (40) 41 62 180 500 743	2030 (118) 64 73 180 884	2040 (184) 91 83 180 001	2050 (249) 126 93 180	2060 (307) 164 102 180	2070 (358) 204 109 180
BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BURNET BURNE BURNET BURNE	Shortage/S T BRAZOS T BRAZOS T BRAZOS T BRAZOS T BRAZOS Shortage/S T BRAZOS T BRAZOS	Surplus Conservation Drought Management Expansion of Groundwater Supply Buena Vista Regional Project us/Shortage Gurplus Conservation	15% Ellenburger-San Saba (Colorado Basin) LCRA System	(40) 41 62 180 500 743	(118) 64 73 180 884	(184) 91 83 180	(249) 126 93 180	(307) 164 102 180	(358) 204 109 180
BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BURNET BURNE BURNET BURNE	T BRAZOS T BRAZOS T BRAZOS T BRAZOS T BRAZOS Remaining Surpl Shortage/S T BRAZOS T BRAZOS	Conservation Drought Management Expansion of Groundwater Supply Buena Vista Regional Project us/Shortage	15% Ellenburger-San Saba (Colorado Basin) LCRA System	41 62 180 500 743	64 73 180 884	91 83 180	126 93 180	164 102 180	204 109 180
BERTRAM BURNE BERTRAM BURNE BERTRAM BURNE BURNET BURNE BURNET BURNE	T BRAZOS BRAZOS T BRAZOS Remaining Surpl Shortage/S T BRAZOS T BRAZOS	Drought Management Expansion of Groundwater Supply Buena Vista Regional Project us/Shortage	15% Ellenburger-San Saba (Colorado Basin) LCRA System	62 180 500 743	73 180 884	83	93 180	102 180	109 180
BERTRAM BURNE BERTRAM BURNE BURNET BURNE BURNET BURNE	T BRAZOS T BRAZOS Remaining Surpl Shortage/S T BRAZOS T BRAZOS	Expansion of Groundwater Supply Buena Vista Regional Project us/Shortage	Ellenburger-San Saba (Colorado Basin) LCRA System	180 500 743	180 884	180	180	180	180
BERTRAM BURNE	T BRAZOS Remaining Surpl Shortage/S T BRAZOS T BRAZOS	Buena Vista Regional Project us/Shortage	LCRA System	500 743	884	004			
BURNET BURNE BURNET BURNE	Remaining Surpl Shortage/S T BRAZOS T BRAZOS	us/Shortage Surplus		743		884	884	884	884
BURNET BURNE BURNET BURNE	Shortage/S ET BRAZOS ET BRAZOS	Surplus			1,083	1,054	1,034	1,023	1,019
BURNET BURNE BURNET BURNE	Shortage/S T BRAZOS T BRAZOS	Surplus Conservation							
BURNET BURNE BURNET BURNE	T BRAZOS T BRAZOS	Conservation		6	5	4	2	1	0
BURNET BURNE	T BRAZOS	CONSERVATION		1	1	2	3	4	4
		Drought Management	20%	2	2	2	2	3	3
	Remaining Surpl	us/Shortage		7	6	6	5	5	4
		X 1		0.070	1 000		(1 0 0 0	
	Shortage/S	Surplus	1	2,273	1,920	1,621	1,329	1,066	836
BURNET BURNE		Conservation	000/	183	281	403	568	736	913
BURNET BURNE		Drought Management	20%	368	439	498	557	609	655
BURNET	EI COLORADO	Buena Vista Regional Project	LCRA System	1,000	2,000	2,000	2,000	2,000	2,000
	Remaining Surpi	us/Shonage		3,824	4,640	4,522	4,434	4,411	4,404
	Shortage/S	Surplus		268	226	101	156	124	96
COTTONWOOD SHORES BURNE		Conservation		200	220	20	130	21	23
COTTONWOOD SHORES BURNE		Drought Management	20%	45	54	61	68	74	80
COTTONWOOD SHORES BURNE	T COLORADO	Marble Falls Regional Project	LCRA System	376	700	700	700	700	700
	Remaining Surpl	us/Shortage	Lorar Oyotom	711	1.001	972	943	919	899
	J				.,				
	Shortage/S	Surplus		412	198	20	(158)	(318)	(460)
COUNTY-OTHER BURNE	T BRAZOS	Drought Management	15%	175	207	234	260	284	306
COUNTY-OTHER BURNE	T BRAZOS	Buena Vista Regional Project	LCRA System	500	1,000	1,000	1,000	1,000	1,000
COUNTY-OTHER BURNE	ET BRAZOS	Conservation		60	93	83	80	87	94
	Remaining Surpl	us/Shortage		1,147	1,498	1,337	1,182	1,053	940
	Shortage/S	Surplus	-	2,981	2,929	3,215	3,104	2,905	2,623
COUNTY-OTHER BURNE	T COLORADO	Drought Management	15%	351	359	316	333	362	405
COUNTY-OTHER BURNE	ET COLORADO	East Lake Buchanan Regional Project	LCRA System	935	935	935	935	935	935
COUNTY-OTHER BURNE	T COLORADO	Buena Vista Regional Project	LCRA System	500	1,000	1,000	1,000	1,000	1,000
COUNTY-OTHER BURNE	T COLORADO	Marble Falls Regional Project	LCRA System	300	878	878	878	878	878
	Remaining Surpl	us/Shortage							

November 2015

WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Shortage/Su	irplus		177	62	(38)	(137)	(226)	(306)
GRANITE SHOALS	BURNET	COLORADO	Drought Management	5%	33	38	43	48	53	57
GRANITE SHOALS	BURNET	COLORADO	LCRA Contract Amendment	LCRA System				250	250	250
		Remaining Surplu	s/Shortage	· · ·	210	100	5	161	77	1
		Shortage/Su	irplus	1	101	(201)	(454)	(697)	(912)	(1,098)
HORSESHOE BAY	BURNET	COLORADO	Conservation		75	194	343	519	710	901
HORSESHOE BAY	BURNET	COLORADO	Drought Management	25%	187	262	326	386	440	487
HORSESHOE BAY	BURNET	COLORADO	Reuse		50	50	50	50	50	50
HORSESHOE BAY	BURNET	COLORADO	LCRA Contract Amendment	LCRA System	0	150	500	500	1,000	1,000
		Remaining Surplu	s/Shortage		413	455	765	758	1,288	1,340
		Shortage/Si	Indus		10	1	5	0	3	0
			Drought Monogomont	5 0/	10	4	3	3	3	0
KINGSLAND WSC	DURINE I	Pompining Surplu		5%	12	3	3 0	3 12	4	4
		Remaining Surplus	s/Shortage		12	1	0	12	1	4
		Shortage/Su	Irplus		1,418	381	(1,089)	(1,859)	(2,377)	(2,636)
MARBLE FALLS	BURNET	COLORADO	Conservation		234	587	1,016	1,397	1,764	2,059
MARBLE FALLS	BURNET	COLORADO	Drought Management	20%	466	674	968	1,122	1,225	1,277
MARBLE FALLS	BURNET	COLORADO	Direct Reuse		11	11	11	11	11	11
MARBLE FALLS	BURNET	COLORADO	Marble Falls Regional Project	LCRA System	500	4,000	4,000	4,000	4,000	4,000
		Remaining Surplu	s/Shortage		2,629	5,653	4,906	4,671	4,623	4,711
		Shortage/Su	irplus	1	(207)	(379)	(525)	(665)	(788)	(896)
MEADOWLAKES	BURNET	COLORADO	Conservation		84	188	309	443	573	708
MEADOWLAKES	BURNET	COLORADO	Drought Management	20%	170	204	233	261	286	308
		Remaining Surplu	s/Shortage		47	13	17	39	71	120
		Chartage/Cu	Inclus		(4.044)	(4, 700)	(0,400)	(2,005)	(2.044)	(4 702)
MINING	BURNET	COLORADO	Expansion of Groundwater Supply	Ellenburger-San	1,500	1,500	(2,420)	(3,085)	(3,641)	<u>(4,703)</u> 1,500
MINING			Expansion of Groundwater Supply	Saba		500	1 000	1 800	1 800	1 800
MINING	BURNET		Expansion of Groundwater Supply	Marble Falls		500	1,000	1,000	1,000	1,000
	DORNET	Remaining Surplu	s/Shortage		180	207	72	215	1,000	1,000
			sionenage	ļ	405	231	12	215	433	51
		Shortage/Su	Irplus		15	(15)	(36)	(80)	(122)	(163)
COLUMBUS	COLORADO	COLORADO	Conservation		112	206	296	347	404	464
COLUMBUS	COLORADO	COLORADO	Drought Management	15%	170	175	178	185	191	197
							100		470	400

						Water Ma	anagement	Strategies	(ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Shortage/Su	urplus		56	55	54	51	45	40
COUNTY-OTHER	COLORADO	BRAZOS- COLORADO	Drought Management	15%	23	23	23	24	25	26
		Remaining Surplu	is/Shortage		79	78	77	75	70	66
		Shortage/Si	Inclus		(121)	(127)	(120)	(158)	(101)	(226)
COUNTY-OTHER			Drought Management	15%	(121)	151	(130)	155	(191)	(220)
COUNTY-OTHER	COLORADO	COLORADO	Expansion of Groundwater Supply	Gulf Coast	226	226	226	226	226	226
	001010120	Remaining Surplu	us/Shortage		255	250	247	223	195	165
		Shortage/Si	urplus		615	612	612	602	592	580
COUNTY-OTHER	COLORADO	LAVACA	Drought Management	15%	48	49	49	50	52	54
	•	Remaining Surplu	is/Shortage	·	663	661	661	652	644	634
		Shortage/Su	urplus		17	16	16	11	6	0
EAGLE LAKE	COLORADO	BRAZOS- COLORADO	Drought Management	15%	24	24	24	25	26	27
		Remaining Surplu	is/Shortage	•	41	40	40	36	32	27
		Shortage/Si	urplus	4.50/	39	36	35	25	12	0
EAGLE LAKE	COLORADO	COLORADO	Drought Management	15%	54	55	55	57	59	60
		Remaining Surpit	is/Shortage		93	91	90	82	71	60
		Shortage/Si	urolus		27	23	20	13	7	0
WEIMAR	COLORADO	COLORADO	Conservation		19	24	30	39	47	57
WEIMAR	COLORADO	COLORADO	Drought Management	15%	27	27	27	27	27	27
	•	Remaining Surplu	us/Shortage		73	47	50	52	54	57
		Shortage/Su	urplus		56	47	41	27	13	0
WEIMAR	COLORADO	LAVACA	Conservation		37	50	60	78	97	114
WEIMAR	COLORADO	LAVACA	Drought Management	15%	56	57	58	60	62	64
		Remaining Surplu	is/Shortage		149	154	159	165	172	178

		5				0		0		
						Water Ma	nagement	Strategies	(ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
	÷									
		Shortage/Su	irplus		(21,628)	(20,296)	(19,000)	(17,738)	(16,511)	(15,316)
RRIGATION	COLORADO	BRAZOS- COLORADO	Drought Management		8,822	8,584	8,354	8,129	7,910	7,697
RRIGATION	COLORADO	BRAZOS- COLORADO	Conservation - On farm Conservation		1,292	1,654	2,003	2,336	2,652	2,949
RRIGATION	COLORADO	BRAZOS- COLORADO	Conservation - Irrigation Conveyance Improvements		336	1,082	1,815	2,521	3,195	3,793
RRIGATION	COLORADO	BRAZOS- COLORADO	Conservation - Sprinkler Irrigation		92	455	895	1,099	1,099	1,099
RRIGATION	COLORADO	BRAZOS- COLORADO	COA Return Flows		0	0	243	206	485	C
RRIGATION	COLORADO	BRAZOS- COLORADO	LCRA WMP - Interruptible Water	LCRA System	11,086	8,521	4,388	2,692	0	0
	•	Remaining Surplu	s/Shortage		0	0	(1,302)	(755)	(1,170)	222
		Shortage/Su	Irplus		(5,126)	(4,371)	(3,636)	(2,921)	(2,225)	(1,548)
RRIGATION	COLORADO	COLORADO	Drought Management		5,001	4,866	4,735	4,608	4,484	4,363
RRIGATION	COLORADO	COLORADO	Conservation - On farm Conservation		306	356	383	385	357	298
RRIGATION	COLORADO	COLORADO	Conservation - Irrigation Conveyance Improvements		80	233	347	415	431	383
RRIGATION	COLORADO	COLORADO	Conservation - Sprinkler Irrigation		22	98	171	181	181	181
Remaining Surplus/Shortage					283	1,182	2,000	2,668	3,228	3,677
	Kemaining Surplus/Shortage					, -	,	,	, -	,-

		River Basin	Water Management Strategy Name	Source Name	Water Management Strategies (ac-ft/yr)						
WUG Name	County				2020	2030	2040	2050	2060	2070	
		Shortage/Su	Irplus		(32,200)	(29,826)	(27,516)	(25,268)	(23,081)	(20,952)	
IRRIGATION	COLORADO	LAVACA	Drought Management		15,719	15,296	14,885	14,484	14,095	13,716	
IRRIGATION	COLORADO	LAVACA	Conservation - On farm Conservation		1,923	2,431	2,901	3,328	3,708	4,034	
IRRIGATION	COLORADO	LAVACA	Conservation - Irrigation Conveyance Improvements		500	1,589	2,629	3,591	4,466	5,188	
IRRIGATION	COLORADO	LAVACA	Conservation - Sprinkler Irrigation		137	668	1,296	1,565	1,565	1,565	
IRRIGATION	COLORADO	LAVACA	COA Return Flows		0	0	223	130	0	0	
IRRIGATION	COLORADO	LAVACA	LCRA WMP - Interruptible Water	LCRA System	13,921	9,842	4,387	1,695	0	0	
		Remaining Surplu	s/Shortage		0	0	(1,195)	(475)	753	3,551	
		Shortage/Su	Irplus		2	1	1	1	0	0	
AQUA WSC	FAYETTE	COLORADO	Drought Management	15%	1	1	1	1	1	1	
		Remaining Surplu	s/Shortage		3	2	2	2	1	1	
		Shortage/Su	irolus		(74)	(157)	(210)	(259)	(306)	(345)	
COUNTY-OTHER	FAYETTE	COLORADO	Drought Management	15%	133	145	153	161	168	173	
COUNTY-OTHER	FAYETTE	COLORADO	Expansion of Groundwater Supply	Gulf Coast	345	345	345	345	345	345	
		Remaining Surplu	s/Shortage		404	333	288	247	207	173	
		Shortage/Su	Irplus		38	35	33	30	28	26	
COUNTY-OTHER	FAYETTE	GUADALUPE	Drought Management	15%	6	6	6	7	7	8	
		Remaining Surplu	s/Shortage		44	41	39	37	35	34	
		Shortage/Su	Irplus		(198)	(228)	(246)	(264)	(281)	(294)	
COUNTY-OTHER	FAYETTE	LAVACA	Drought Management	15%	47	51	54	57	59	61	
COUNTY-OTHER	FAYETTE	LAVACA	Expansion of Groundwater Supply	Gulf Coast	294	294	294	294	294	294	
	•	Remaining Surplu	s/Shortage		143	117	102	87	72	61	
		Shortage/Su	Irplus		266	196	150	110	74	45	
FAYETTE WSC	FAYETTE	COLORADO	Drought Management	15%	96	106	113	119	125	129	
	•	Remaining Surplu	s/Shortage		362	302	263	229	199	174	
		Shortage/Su	Irplus		15	11	8	5	3	1	
FAYETTE WSC	FAYETTE	GUADALUPE	Drought Management	15%	6	7	7	8	8	8	
		Remaining Surplu	s/Shortage		21	18	15	13	11	9	
		Shortage/Su	Irplus		25	18	12	7	3	0	
FAYETTE WSC	FAYETTE	LAVACA	Drought Management	15%	11	12	13	14	15	15	
		Remaining Surplu	s/Shortage		36	30	25	21	18	15	

					Water Management Strategies (ac-ft/yr)							
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070		
		Shortage/Su	Irplus		28	21	16	12	7	4		
FLATONIA	FAYETTE	GUADALUPE	Conservation		4	6	9	12	16	20		
FLATONIA	FAYETTE	GUADALUPE	Drought Management	15%	10	11	11	12	12	13		
		Remaining Surplu	s/Shortage		42	38	36	36	35	37		
		Charters /C			447	0.0	00	40	00	04		
		Shortage/St	Irpius Concentration	1	117	86	66	48	33	21		
	FAYETTE		Conservation	450/	13	23	34	48	68	85		
FLATONIA	FAYETTE	LAVACA	Drought Management	15%	41	45	48	51	53	55		
FLATONIA	FAYETTE	LAVACA	Reuse		134	149	159	168	176	182		
FLATONIA	FAYETTE		Expansion of Groundwater Supply	Gulf Coast	100	100	100	100	100	100		
		Remaining Surplu	IS/Shortage		405	403	407	415	430	443		
		Shortage/Su	Irplus		429	335	274	219	171	132		
LA GRANGE	FAYETTE	COLORADO	Conservation		42	21	0	0	0	0		
LA GRANGE	FAYETTE	COLORADO	Drought Management	15%	130	144	153	161	168	174		
	1	Remaining Surplu	is/Shortage		471	356	274	219	171	132		
									•			
		Shortage/Su	ırplus		1	(85)	(142)	(191)	(234)	(267)		
SCHULENBERG	FAYETTE	LAVACA	Conservation		37	63	96	141	188	232		
SCHULENBERG	FAYETTE	LAVACA	Drought Management	15%	110	123	132	139	146	150		
		Remaining Surplu	is/Shortage		148	101	86	89	100	115		
					(000)	(0.40)	(070)	(04.0)	(0.40)	(004)		
		Shortage/St			(206)	(243)	(279)	(310)	(349)	(391)		
MANUFACTURING	FAYEITE		Expansion of Groundwater Supply	Gulf Coast	391	391	391	391	391	391		
		Remaining Surplu	Is/Shortage		185	148	112	81	42	0		
		Shortage/Su	Irplus		(1.576)	(1.176)	(717)	(274)	179	186		
MINING	FAYETTE	COLORADO	Expansion of Groundwater Supply	Gulf Coast	1.576	1,176	717	274	0	0		
		Remaining Surplu	is/Shortage		0	0	0	0	179	186		
								. – 1				
		Shortage/Su	Irplus		(66)	(42)	(13)	15	42	43		
MINING	FAYETTE	GUADALUPE	Expansion of Groundwater Supply	Sparta	66	42	13	0	0	0		
		Remaining Surplu	is/Shortage		0	0	0	15	42	43		
		Shortage/Su	irolus		(344)	(274)	(195)	(119)	(40)	(39)		
MINING	FAYETTE		Expansion of Groundwater Supply	Gulf Coast	344	.344	344	344	344	344		
	17.12112	Remaining Surplu	Is/Shortage		0	70	149	225	304	305		
		0 1			-	-	-	-				
		Shortage/Su	irplus		10,286	10,286	8,186	1,886	(2,614)	(7,414)		
STEAM ELECTRIC POWER	FAYETTE	COLORADO	Long Lake Storage		2,000	2,000	2,000	2,000	2,000	2,000		
STEAM ELECTRIC POWER	FAYETTE	COLORADO	LCRA Contract Amendment	LCRA System	6,000	7,000	9,000	11,000	13,000	15,000		
		Remaining Surplu	s/Shortage		18.286	19.286	19.186	14.886	12.386	9,586		

		River Basin	Water Management Strategy Name		Water Management Strategies (ac-ft/yr)						
WUG Name	County			Source Name	2020	2030	2040	2050	2060	2070	
		Objects and (O			550	400	10.1	005	0.47	407	
		Shortage/Si	urpius Dreumitit Management	450/	559	486	424	325	217	107	
	GILLESPIE		Drought Management	15%	263	274	284	299	315	331	
COUNTY-OTHER	GILLESPIE	COLORADO	Brush Control		0	0	0	0	522	0	
		Remaining Surpic	is/Shortage		822	760	708	624	532	438	
		Shortage/S	urplus		28	26	24	20	16	12	
COUNTY-OTHER	GILLESPIE	GUADALUPE	Drought Management	15%	10	10	11	11	12	12	
		Remaining Surplu	is/Shortage		38	36	35	31	28	24	
		Shortage/S	urplus		690	509	360	164	(30)	(222)	
FREDERICKSBURG	GILLESPIE	COLORADO	Conservation		317	599	733	916	1094	1301	
FREDERICKSBURG	GILLESPIE	COLORADO	Drought Management	15%	472	499	521	551	580	609	
		Remaining Surplu	is/Shortage		1,007	1,108	1,093	1,080	1,064	1,079	
		Charters/C			(000)	(000)	(444)	(450)	(500)	(000)	
		Shortage/Si		Ellephurger Sen	(309)	(362)	(411)	(452)	(536)	(626)	
MANUFACTURING	GILLESPIE	COLORADO	Expansion of Groundwater Supply	Saba	626	626	626	626	626	626	
		Remaining Surplu	is/Shortage		317	264	215	174	90	0	
		Shortage/S	urplus		0	0	0	0	0	0	
AUSTIN	HAYS	COLORADO	Drought Management	10%	1	13	25	63	152	275	
		Remaining Surplu	is/Shortage		1	13	25	63	152	275	
		Shortago/Si	Indus		161	(667)	(1.600)	(2.074)	(4 420)	(6,000)	
BLIDA	HAVS		Conservation		88	206	(1,090)	(2,974)	(4,429)	(0,000) 888	
BUDA	HAYS		Drought Management	10%	177	200	342	456	586	734	
BUDA	HAYS		Reuse	1070	2,240	2.240	1.740	1.740	1,740	1.740	
BUDA	HAYS	COLORADO	Groundwater Importation - HCPUA Pipeline	Region L Carrizo- Wilcox (HCPUA)	0	667	1,690	2,467	2,467	2,467	
BUDA	HAYS	COLORADO	Saline Edwards ASR Project	Saline Edwards ASR	0	500	500	500	500	500	
BUDA	HAYS	COLORADO	Edwards/Middle Trinity ASR	Trinity (ASR)	0	600	600	600	600	600	
		Remaining Surplu	is/Shortage		2,666	3,797	3,616	3,341	2,173	841	

		ounty River Basin V	Water Management Strategy Name Source Na		Water Management Strategies (ac-ft/yr)						
WUG Name	County			Source Name	2020	2030	2040	2050	2060	2070	
		Chartara/C			000	204	(500)	(4 507)	(0, 400)	(0.000)	
	LIAVE		Drought Monogoment	150/	983	394	(530)	(1,587)	(2,489)	(3,382)	
COUNTY-OTHER	HAIS	COLORADO	Drought Management		400	554	693	852	987	1,121	
COUNTY-OTHER	HAYS	COLORADO	project)	Wilcox	0	2,000	2,000	2,000	2,000	2,000	
COUNTY-OTHER	HAYS	COLORADO	Saline Edwards ASR Project	Saline Edwards ASR	0	200	200	200	200	200	
COUNTY-OTHER	HAYS	COLORADO	Edwards/Middle Trinity ASR	Trinity (ASR)	0	200	200	200	200	200	
		Remaining Surplu	is/Shortage		1,449	3,348	2,563	1,665	898	139	
				· · · · · ·	· · · · ·		· · ·	·····•			
		Shortage/Su	urplus		27	(31)	(104)	(198)	(307)	(432)	
DRIPPING SPRINGS	HAYS	COLORADO	Conservation		48	67	98	141	195	262	
DRIPPING SPRINGS	HAYS	COLORADO	Drought Management	20%	96	107	122	141	163	188	
DRIPPING SPRINGS	HAYS	COLORADO	Water Purchase (from Dripping Springs WSC)	6	0	31	104	198	307	432	
	L	Remaining Surplu	us/Shortage	1	171	174	220	282	358	450	
									•		
		Shortage/Su	urplus		0	0	0	0	0	(126)	
DRIPPING SPRINGS WSC	HAYS	COLORADO	Conservation		54	124	152	187	232	283	
DRIPPING SPRINGS WSC	HAYS	COLORADO	Drought Management	20%	107	136	172	218	271	330	
DRIPPING SPRINGS WSC	HAYS	COLORADO	Groundwater Importation (Hays County project)	Region L Carrizo- Wilcox	0	1,000	1,000	1,000	1,000	1,000	
		Remaining Surplu	is/Shortage		161	1,260	1,324	1,405	1,503	1,487	
DRIPPING SPRINGS WSC	HAYS	COLORADO	Water Sale (to Dripping Springs)		0	(31)	(104)	(198)	(307)	(432)	
	Rem	aining Surplus/Sho	ortage After Sales		161	1,229	1,220	1,207	1,196	1,055	
		Shortage/Si	urplus		728	(937)	(2,974)	(5,522)	(8,405)	(11,687)	
WEST TRAVIS COUNTY PUA	HAYS	COLORADO	Conservation		405	1,070	2,064	3,501	5,348	7,674	
WEST TRAVIS COUNTY PUA	HAYS	COLORADO	Drought Management	20%	819	1,152	1,559	2,069	2,645	3,302	
WEST TRAVIS COUNTY PUA	HAYS	COLORADO	Groundwater Importation - Hays County Pipeline Project	Region L Carrizo- Wilcox	0	1,000	1,000	1,000	1,000	1,000	
WEST TRAVIS COUNTY PUA	HAYS	COLORADO	Amend LCRA Contract	LCRA System	300	500	2,700	3,000	5,800	5,800	
	•	Remaining Surplu	is/Shortage	•	2,252	2,785	4,349	4,048	6,388	6,089	

						Water Management Strategies (ac-ft/)					
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070	
			·	•							
		Shortage/Su	urplus	1	(531)	(761)	(1,047)	(1,131)	(1,340)	(1,579)	
MINING	HAYS	COLORADO	Expansion of Groundwater Supply	Trinity	531	761	1,047	1,047	1,047	1,047	
MINING	HAYS	COLORADO	Edwards/Middle Trinity ASR	Trinity (ASR)	0	100	100	100	100	100	
MINING	HAYS	COLORADO	Water Purchase from Buda	Reuse	0	0	500	500	500	500	
		Remaining Surplu	is/Shortage		0	100	600	516	307	68	
		Shortage/Si	Irplus		3 646	3 702	3 703	3 689	3 723	3 756	
COUNTY-OTHER	LI ANO		Drought Management	5%	31	28	28	28	27	25	
		Remaining Surplu	Is/Shortage	070	3 677	3 730	3 731	3 717	3 750	3 781	
		rteinaining earpie			3,011	5,750	3,731	5,111	3,130	5,701	
		Shortage/Su	urplus		39	(50)	(41)	(4)	(67)	(133)	
HORSESHOE BAY	LLANO	COLORADO	Conservation		189	360	509	638	791	938	
HORSESHOE BAY	LLANO	COLORADO	Drought Management	25%	464	486	484	474	490	507	
HORSESHOE BAY	LLANO	COLORADO	Reuse		50	50	50	50	50	50	
HORSESHOE BAY	LLANO	COLORADO	LCRA Contract Amendment	LCRA System	0	50	50	50	50	50	
		Remaining Surplu	is/Shortage		742	896	1,052	1,208	1,314	1,412	
		Charters/C	um lu e				(404)	(400)	(407)	(400)	
		Shortage/St	urpius Operating		(445)	(475)	(461)	(439)	(467)	(496)	
			Conservation	450/	88	118	143	169	209	252	
			Drought Management	15%	129	134	132	128	133	137	
			Reuse	Lieken (Aswifer	100	100	100	100	100	100	
LLANO	LLANO	COLORADO	Development of New Groundwater	HICKORY Aquiller	200	200	200	200	200	200	
		Remaining Surpic	is/Shortage		12	11	114	100	1/5	193	
		Shortage/Si	urplus		1,878	1,826	1,811	1,766	1,724	1,689	
BAY CITY	MATAGORDA	BRAZOS- COLORADO	Conservation		252	199	114	94	95	96	
BAY CITY	MATAGORDA	BRAZOS- COLORADO	Drought Management	20%	567	578	581	590	598	605	
		Remaining Surplu	is/Shortage		2,697	2,603	2,506	2,450	2,417	2,390	
		Shortage/Si	Inclus		1/6	1/3	1/8	1/5	13/	12/	
		BRAZOS-			140	145	140	145	134	124	
COUNTY-OTHER	MATAGORDA	COLORADO	Drought Management	5%	42	42	42	42	42	43	
		Remaining Surplu	is/Shortage		188	185	190	187	176	167	
		Shortage/Si	Inclus		222	221	333	221	320	207	
COUNTY-OTHER	MATAGORDA		Drought Management	5%	9	9	9	9	9	021	
		Remaining Surplu	Is/Shortage	070	341	340	341	340	338	336	
		Shortage/Su	urplus	1	85	83	86	84	76	69	
COUNTY-OTHER	MATAGORDA	COLORADO- LAVACA	Drought Management	5%	30	30	30	30	30	31	
		Remaining Surplu	is/Shortage		115	113	116	114	106	100	

					Water Management Strategies (ac-ft/yr)					
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Ob antana (Os			005	070	070	00.4	054	0.40
		Shortage/St	Irpius	L	385	373	370	364	354	346
PALACIOS	MATAGORDA	LAVACA	Drought Management	15%	102	104	104	105	107	108
		Remaining Surplu	s/Shortage		487	477	474	469	461	454
		<u> </u>				((((======)
		Shortage/Su	Irplus		(70,487)	(67,962)	(65,505)	(63,114)	(60,787)	(58,523)
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Drought Management		16,484	16,034	15,596	15,170	14,756	14,353
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Conservation - On farm Conservation		4,210	5,539	6,905	8,312	9,765	11,269
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Conservation - Irrigation Conveyance Improvements		1,095	3,622	6,258	8,969	11,762	14,492
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Conservation - Sprinkler Irrigation		301	1,523	3,086	3,910	3,910	3,910
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	COA Return Flows		3,683	3,872	4,688	5,332	6,032	6,997
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	LCRA WMP - Interruptible Water	LCRA System	15,428	9,595	3,807	1,889	0	0
		Remaining Surplu	s/Shortage		(29,286)	(27,777)	(25,165)	(19,532)	(14,562)	(7,502)
		Shortage/Su	irplus		(12,024)	(11,663)	(11,312)	(10,971)	(10,639)	(10,315)
IRRIGATION	MATAGORDA	COLORADO	Drought Management		2,354	2,290	2,227	2,167	2,108	2,050
IRRIGATION	MATAGORDA	COLORADO	Conservation - On farm Conservation		718	951	1,192	1,445	1,709	1,986
IRRIGATION	MATAGORDA	COLORADO	Conservation - Irrigation Conveyance Improvements		187	622	1,081	1,559	2,059	2,554
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Conservation - Sprinkler Irrigation		51	261	533	680	680	680
IRRIGATION	MATAGORDA	COLORADO	COA Return Flows		663	708	875	1,020	1,196	1,469
IRRIGATION	MATAGORDA	COLORADO	LCRA WMP - Interruptible Water	LCRA System	2,778	1,754	710	362	0	0
		Remaining Surplu	s/Shortage		(5,273)	(5,077)	(4,694)	(3,738)	(2,887)	(1,576)

		ty River Basin V			Water Management Strategies (ac-ft/yr)						
WUG Name	County		Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070	
		Shortage/Su	Irplus		(84,037)	(81,218)	(78,474)	(75,804)	(73,206)	(70,678)	
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Drought Management		18,406	17,904	17,415	16,939	16,476	16,026	
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Conservation - On farm Conservation		5,019	6,619	8,272	9,984	11,760	13,610	
IRRIGATION	MATAGORDA	COLORADO- LAVACA	Conservation - Irrigation Conveyance Improvements		1,305	4,328	7,497	10,772	14,165	17,502	
IRRIGATION	MATAGORDA	BRAZOS- COLORADO	Conservation - Sprinkler Irrigation		359	1,820	3,697	4,696	4,696	4,696	
IRRIGATION	MATAGORDA	COLORADO- LAVACA	COA Return Flows		4,486	4,746	5,793	6,659	7,648	9,094	
IRRIGATION	MATAGORDA	COLORADO- LAVACA	LCRA WMP - Interruptible Water	LCRA System	18,791	11,760	4,704	2,360	0	0	
Remaining Surplus/Shortage						(34,041)	(31,096)	(24,394)	(18,461)	(9,750)	
		Shortage/Si	Irolus		(25 363)	(25 377)	(25.401)	(25.431)	(25.461)	(25 / 83)	
STEAM ELECTRIC POWER	MATAGORDA		STPNOC Alternate Canal Delivery		12 727	12 727	12 727	12 727	12 727	12 727	
	MATAGORDA				10,000	10,000	10,000	10,000	10,000	10,000	
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	STPNOC Brackish Surface Water Blending	Gulf of Mexico	3,000	3,000	3,000	3,000	3,000	3,000	
STEAM ELECTRIC POWER	MATAGORDA	COLORADO	COA Return Flows		770	710	766	763	764	859	
		Remaining Surplu	s/Shortage		1.134	1.060	1.092	1.059	1.030	1.103	
		Ŭ,	ě	1	, -	,	,	,	,	,	
		Shortage/Su	Irplus		(16)	(15)	(14)	(18)	(23)	(29)	
COUNTY-OTHER	MILLS	BRAZOS	Drought Management	20%	29	29	28	29	30	31	
		Remaining Surplu	s/Shortage	•	13	14	14	11	7	2	
								[
		Shortage/St	Irplus	000/	90	92	94	87	78	68	
COUNTY-OTHER	MILLS	COLORADO	Drought Management	20%	48	48	47	49	51	53	
		Remaining Surplu	s/Shortage		138	140	141	130	129	121	
		Shortage/Su	Irplus		(48)	(51)	(53)	(64)	(77)	(94)	
GOLDTHWAITE	MILLS	COLORADO	Conservation		10	13	24	38	54	58	
GOLDTHWAITE	MILLS	COLORADO	Drought Management	15%	53	53	53	55	57	59	
		Remaining Surplu	s/Shortage		15	15	24	29	34	23	
		Shortage/Su	Irplus	1	(605)	(575)	(545)	(516)	(487)	(460)	
IRRIGATION	MILLS	BRAZOS	Expansion of Groundwater Supply	Trinity (Colorado Basin)	480	480	480	480	480	480	
IRRIGATION	MILLS	BRAZOS	Drought Management		125	95	65	36	7	0	
		Remaining Surplu	s/Shortage		0	0	0	0	0	20	

WUG Name County River Basin Water Management Strategy Name Source Name 2020 2030 2040 2050						Water Management Strategies (ac-ft/yr)						
Shortage/Surplus 215 211 217 222 216 COUNTY-OTHER [SAN SABA [COLORADO] Drought Management 15% 228 236 235 230 235 235 236 235 236 235 236 235 236 235 235 236 2	WUG Name	County	unty River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070	
COUNTY-OTHER SAN SABA COLORADO Drought Management 15% 228 236 235 236 235 236 236 235 235							[
COUNTY-OTHER ISAM SABA COUDRADO Drought Management 15% 228 239 230 235 235 Remaining Surplus/Shortage 131 129 131			Shortage/Su	urplus	4 = 0 (215	211	217	222	216	209	
Admaining Surplus:shortage 443 447 452 452 451 RICHLAND SUD SAN SABA COLORADO Drought Management 131 129 131 131 131 RICHLAND SUD SAN SABA COLORADO Drought Management 156 155 156 156 156 SAN SABA COLORADO Conservation 114 211 302 77 463 143	COUNTY-OTHER	SAN SABA		Drought Management	15%	228	236	235	230	235	240	
Shortage/Surplus 131 120 131 331 331			Remaining Surplu	is/Shortage		443	447	452	452	451	449	
RICHLAND SUD SAN SABA COLORADO Drought Management 15% 25 26 25 26 Remaining Surplux/Shortage 156 155 156 <			Shortage/Su	Irplus		131	129	131	131	131	130	
Remaining Surplus/Shortage 156 157 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 </td <td>RICHLAND SUD</td> <td>SAN SABA</td> <td>COLORADO</td> <td>Drought Management</td> <td>15%</td> <td>25</td> <td>26</td> <td>25</td> <td>25</td> <td>25</td> <td>26</td>	RICHLAND SUD	SAN SABA	COLORADO	Drought Management	15%	25	26	25	25	25	26	
Shortage/Surplus (88) (128) (124) (99) (125) (1 SAN SABA SAN SABA COLORADO Conservation 114 211 302 377 463 t SAN SABA SAN SABA COLORADO Drought Management 20% 228 235 230 235 1 1 1 1 302 377 463 t 508 573 1 1 1 302 377 463 t 3 1 302 337 463 t 3 3 3 508 573 1 1 302 337 463 t 3 3 3 508 508 508 508 508 502 229 251 1 30 3		•	Remaining Surplu	is/Shortage	•	156	155	156	156	156	156	
SAN SABA SAN SABA COLCRADO Conservation 114 211 320 3371 463 1 SAN SABA SAN SABA COLCRADO Drought Management 20% 228 236 235 230 235 230 235 235 230 235 235 236 235 230 235 230 235 230 235 230 235 236 235 230 235 235 236 235 230 235 230 235 236 235 230 235 236 235 236 235 236 235 236 235 236 235 236 235 236 235 236 235 236 235 236 235 236 236 235 236 236 236 236 236 236 236 236 236 237 8662 245 237 8662 236 236 236 236 236			Shortage/Si	indue		(88)	(128)	(124)	(00)	(125)	(152)	
SAN SABA DAN SABA COLCARDO Drought Management 20% 211 332 311 143 532 SAN SABA SAN SABA COLCRADO Drought Management 20% 228 236 235 235 235 235 236 236 235 236 231 232	SANSABA			Consonvation		(00)	211	302	377	463	510	
Sind SubA [Sind SubA <th[][sind suba<="" th=""> [Sind SubA [Sind S</th[][sind>				Drought Management	20%	229	211	225	220	235	240	
Nonnaming Computationage 2.04 3.19 4.13 3.00 3.13 AQUA WSC TRAVIS COLORADO Conservation 721 584 447 286 138 AQUA WSC TRAVIS COLORADO Drought Management 15% 163 184 204 229 251 2 AQUA WSC TRAVIS COLORADO Drought Management 15% 163 184 204 229 251 2 Remaining Surplus/Shortage 958 862 738 602 4455 2 AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 22,889 24,659 28,17 31,203 33,000 30,000 32,459 24,659 28,11 31,203 33,000 30,000 32,000 32,500 32,500 33,000 30,000 32,600 32,600 32,600 32,600 32,600 32,600 32,600 33,000 30,000 30,000 30,000 32,000 <td>SAN SABA</td> <td>SAN SADA</td> <td>Remaining Surplu</td> <td></td> <td>2076</td> <td>220</td> <td>230</td> <td>233</td> <td>230 508</td> <td>573</td> <td>508</td>	SAN SABA	SAN SADA	Remaining Surplu		2076	220	230	233	230 508	573	508	
Shortage/Surplus 721 584 447 286 138 AQUA WSC TRAVIS COLORADO Drought Management 15% 163 184 204 229 251 231 360			Remaining Surpic	is/Shonage		234	319	413	500	575	290	
AQUA WSC TRAVIS COLORADO Conservation 74 94 87 87 96 AQUA WSC TRAVIS COLORADO Drought Management 15% 163 184 204 229 251 25 Remaining Surplus/Shortage Shortage/Surplus 108,581 74,946 30,447 (1,231) (29,821) (63,1 AUSTIN TRAVIS COLORADO Conservation 22,969 24,559 28,317 31,220 33,822 36,1 AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 22,989 24,659 26,1 AUSTIN TRAVIS COLORADO Direct Reuse 10,000 1,000 1,000 2,000 2,000 2,500 33, AUSTIN TRAVIS COLORADO Reinwater Harvesting 83 828 4,141 8,282 12,423 16,1 AUSTIN TRAVIS COLORADO Increased Long Lake Storage 20,000			Shortage/Su	urplus		721	584	447	286	138	0	
AQUA WSC TRAVIS COLORADO Drought Management 15% 163 184 204 229 251 Remaining Surplus/Shortage 956 862 738 602 485 Shortage/Surplus 108,581 74,946 30,447 (1,231) (29,821) (63,1 AUSTIN TRAVIS COLORADO Conservation 22,959 28,317 31,220 33,822 36,1 AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 32,4859 22,459 26,501 32,4559 28,317 31,220 33,822 36,1 AUSTIN TRAVIS COLORADO Direct Reuse 10,000 1,5000 25,000 27,500 30,000 32,4 AUSTIN TRAVIS COLORADO Rainwater Harvesting 83 828 4,141 8,282 12,423 161,4 AUSTIN TRAVIS COLORADO Increased use of Long Lake Storage 20,000 20,000 20,	AQUA WSC	TRAVIS	COLORADO	Conservation		74	94	87	87	96	103	
Remaining Surplus/Shortage 958 862 738 602 485 AUSTIN TRAVIS COLORADO Conservation 22,969 24,559 28,317 31,220 33,822 364, 34,237 AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 22,989 24,659 28,317 31,220 33,822 364, 34,0571N AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 22,989 24,659 28,17 31,220 33,822 364, 30,000 30,000 33,002 22,000 22,000 22,000 22,000 22,000 25,000 31,622 364, 4USTIN TRAVIS COLORADO Remaining Surplus/Shortage 10,000 1,000	AQUA WSC	TRAVIS	COLORADO	Drought Management	15%	163	184	204	229	251	272	
Shortage/Surplus 108,581 74,946 30,447 (1,231) (29,821) (63,1) AUSTIN TRAVIS COLORADO Conservation 22,969 24,559 28,317 31,220 33,822 36,1 AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 22,989 24,659 26,1 AUSTIN TRAVIS COLORADO Direct Reuse 10,000 15,000 25,000 32,900 32,2 AUSTIN TRAVIS COLORADO Reuse - decentralized, gray water 1,000 1,000 1,500 2,500 32,600 32,600 32,600 32,600 30,000 3,000 <			Remaining Surplu	is/Shortage		958	862	738	602	485	375	
AUSTIN TRAVIS COLORADO Conservation 22,969 24,559 28,317 31,220 33,822 36,1 AUSTIN TRAVIS COLORADO Drought Management 10% 15,745 18,293 20,997 22,989 24,659 26,17 AUSTIN TRAVIS COLORADO Direct Reuse 10,000 15,000 25,000 27,500 30,000 32,4 AUSTIN TRAVIS COLORADO Reuse - decentralized, gray water 1,000 1,000 1,500 2,000 2,500 32,4 AUSTIN TRAVIS COLORADO Reinwater Harvesting 83 828 4,141 8,282 12,423 16,5 AUSTIN TRAVIS COLORADO Rainwater Harvesting 83 828 4,141 8,282 12,423 16,5 AUSTIN TRAVIS COLORADO Increased use of Long Lake Storage 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 2			Shortago/Si	uralue		100 501	74.046	20 447	(1.221)	(20.921)	(62 104)	
AUSTIN TRAVIS COLORADO Drought Management 10% 15,743 22,303 20,311 31,220 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,022 33,020 32,24 65,022 34,653 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 22,393 24,653 26,17 AUSTIN TRAVIS COLORADO Reuse - decentralized, gray water 1,000 1,000 1,000 2,000 22,000 22,000 22,000 3,000				Consorvation		22,060	24,550	28 217	21 220	23,021)	36 800	
AUSTIN TRAVIS COLORADO Direct Reuse 10,743 10,233 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,333 22,330 23,33 33,000 3				Drought Management	10%	22,909	18 202	20,317	22 080	24 650	26 641	
AUSTIN TRAVIS COLORADO Lifect Redse 10,000 13,000 23,000 23,000 23,000 23,000 23,000 24,000 2,				Diougint Management	1076	10,743	15,293	20,997	22,909	24,039	20,041	
AUSTIN TRAVIS COLORADO Retise decentralized, gray water 1,000 1,000 1,000 2,000 2,000 3,1 AUSTIN TRAVIS COLORADO Rainwater Harvesting 83 828 4,141 8,282 12,423 16,5 AUSTIN TRAVIS COLORADO Longhorn Dam Operations Improvements 3,000				Direct Reuse		10,000	1000	25,000	27,500	30,000	32,300	
AUSTIN TRAVIS COLORADO Railwate Harvesting 65 628 4,141 6,262 12,423 16,1 AUSTIN TRAVIS COLORADO Longhom Dam Operations Improvements 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 20,000				Reuse - decentralized, gray water		1,000	1,000	1,500	2,000	2,300	3,000	
AUSTIN TRAVIS COLORADO Longinition Data Operations Improvements 3,000 20,000	AUSTIN	TRAVIS	COLORADO	Longhorn Dom Operations		03	020	4,141	0,202	12,423	10,504	
AUSTIN TRAVIS COLORADO Increased use of Long Lake Storage 20,000 1,000	AUSTIN	TRAVIS	COLORADO			3,000	3,000	3,000	3,000	3,000	3,000	
AUSTIN TRAVIS COLORADO Capture Local Inflows to Lady Bird Lake 1,000<	AUSTIN	TRAVIS	COLORADO	Increased use of Long Lake Storage		20.000	20.000	20.000	20.000	20.000	20.000	
AUSTIN TRAVIS COLORADO Aquifer Storage and Recovery 10,000 25,000 25,000 50,000 20,000<	AUSTIN	TRAVIS	COLORADO	Capture Local Inflows to Lady Bird		1,000	1,000	1,000	1,000	1,000	1,000	
AUSTIN TRAVIS COLORADO Indirect Potablege duta (Record) 10,000 20,	AUSTIN	TRAVIS		Aquifer Storage and Recovery		10 000	25,000	25 000	50,000	50,000	50,000	
AUSTIN TRAVIS COLORADO Bird Lake 20,000 20				Indirect Potable Reuse through Lady		20,000	20,000	20,000	20,000	20,000	20,000	
AUSTIN TRAVIS COLORADO Lake Austin Operations 2,500 <t< td=""><td>AUSTIN</td><td>TRAVIS</td><td>COLORADO</td><td>Bird Lake</td><td></td><td>20,000</td><td>20,000</td><td>20,000</td><td>20,000</td><td>20,000</td><td>20,000</td></t<>	AUSTIN	TRAVIS	COLORADO	Bird Lake		20,000	20,000	20,000	20,000	20,000	20,000	
AUSTIN IRAVIS COLORADO COA Return Flows 19,258 17,749 22,990 22,874 26,759 30,7 Remaining Surplus/Shortage 234,136 223,875 204,892 210,134 196,842 179,2 Shortage/Surplus 328 333 336 337 338 338 BARTON CREEK WEST TRAVIS COLORADO Conservation 422 77 108 122 137 108 BARTON CREEK WEST TRAVIS COLORADO Drought Management 15% 65 64 64 63 63 Remaining Surplus/Shortage	AUSTIN	TRAVIS	COLORADO	Lake Austin Operations		2,500	2,500	2,500	2,500	2,500	2,500	
Remaining Surplus/Shortage 234,136 223,875 204,892 210,134 196,842 179,2 Shortage/Surplus Shortage/Surplus 328 333 336 337 338 336 BARTON CREEK WEST TRAVIS COLORADO Conservation 42 77 108 122 137 107 BARTON CREEK WEST TRAVIS COLORADO Drought Management 15% 65 64 64 63 63 Remaining Surplus/Shortage	AUSTIN	TRAVIS	COLORADO	COA Return Flows		19,258	17,749	22,990	22,874	26,759	30,312	
Shortage/Surplus328333336337338338BARTON CREEK WESTTRAVISCOLORADOConservation4277108122137BARTON CREEK WESTTRAVISCOLORADODrought Management15%6564646363Remaining Surplus/Shortage			Remaining Surplu	is/Shortage		234,136	223,875	204,892	210,134	196,842	179,222	
BARTON CREEK WEST TRAVIS COLORADO Conservation 42 77 108 122 137 BARTON CREEK WEST TRAVIS COLORADO Drought Management 15% 65 64 64 63 63 BARTON CREEK WEST TRAVIS COLORADO Drought Management 15% 65 64 64 63 63			Shortage/Su	urplus		328	333	336	337	338	338	
BARTON CREEK WEST TRAVIS COLORADO Drought Management 15% 65 64 64 63 63	BARTON CREEK WEST	TRAVIS	COLORADO	Conservation		42	77	108	122	137	152	
	BARTON CREEK WEST	TRAVIS	COLORADO	Drought Management	15%	65	64	64	63	63	63	
			Remaining Surplu	is/Shortage		370	410	444	459	475	490	

		ounty River Basin Wa	Water Management Strategy Name		Water Management Strategies (ac-ft/yr)						
WUG Name	County			Source Name	2020	2030	2040	2050	2060	2070	
		Shortage/Su	Irplus		(225)	(491)	(745)	(1,030)	(1,282)	(1,518)	
BEE CAVE VILLAGE	TRAVIS	COLORADO	Conservation		175	374	608	863	1,136	1,323	
BEE CAVE VILLAGE	TRAVIS	COLORADO	Drought Management	20%	355	409	459	516	567	614	
BEE CAVE VILLAGE	TRAVIS	COLORADO	Water Purchase (from West Travis County PUA)	LCRA System	300	300	600	600	800	800	
		Remaining Surplu	is/Shortage		605	592	922	949	1,221	1,219	
		Shortage/Si	irolus		140	105	72	32	(3)	(36)	
BRIARCHEE VILLAGE	TRAVIS		Drought Management	10%	26	30	33	37	40	44	
	110,010	Remaining Surplu	is/Shortage	1070	166	135	105	69	37	8	
					(= = =)	((1.1.5.1)	((((, , , , , ,)	
	TD 41 (10	Shortage/Su	urplus		(505)	(941)	(1,121)	(987)	(1,084)	(1,194)	
CEDAR PARK	TRAVIS		Refer to Region G Plan		(505)	(2.11)	(1.10)	(0.07)	(1.00.0)		
		Remaining Surplu	is/Shortage		(505)	(941)	(1,121)	(987)	(1,084)	(1,194)	
		Shortage/Su	Irplus		160	(182)	(284)	(412)	(550)	(686)	
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	Drought Management	5%	28	31	34	38	41	45	
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	Saline Edwards ASR Project	Saline Edwards ASR	0	300	300	300	300	300	
CREEDMOOR-MAHA WSC	TRAVIS	COLORADO	New LCRA Contract	LCRA System	0	400	400	400	400	400	
	Remaining Surplus/Shortage					549	450	326	191	59	
		Oh a sta sta /O				0			0		
	TD A) (10	Shortage/St		50/	0	0	0	0	0	0	
CREEDMOOR-MAHA WSC	TRAVIS	GUADALUPE	Drought Management	5%	1	2	2	2	2	2	
		Remaining Surplu	IS/Shonage		1	2	2	2	2	2	
		Shortage/Su	Irplus		0	(101)	(196)	(305)	(402)	(493)	
ELGIN	TRAVIS	COLORADO	Drought Management	15%	38	53	67	83	98	112	
ELGIN	TRAVIS	COLORADO	See Bastrop County Elgin		0	48	129	222	304	381	
		Remaining Surplu	is/Shortage	-	38	0	0	0	0	0	
		Shortago/Si	Induc		(02)	(112)	(122)	(150)	(102)	(206)	
			Conservation		(93)	(113)	(133)	(156)	(102)	(200)	
IONESTOWN			Drought Management	20%	82	86	90	95	90	104	
	IIIANIO	Remaining Surplu	is/Shortage	2070	9	9	8	10	13	20	
						•			•		
		Shortage/Su	urplus		2,157	1,840	1,537	1,193	885	597	
LAGO VISTA	TRAVIS	COLORADO	Conservation		187	301	426	604	773	972	
LAGO VISTA	TRAVIS	COLORADO	Drought Management	20%	374	437	498	566	628	686	
		Remaining Surplu	is/Shortage		2,344	2,141	1,963	1,797	1,658	1,569	
						Water Ma	nagement	Strategies (ac-ft/yr)		
---------------------	--------	--------------------	---	-------------	---------	----------	----------	--------------	-----------	----------	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070	
	1 -	Shortage/Su	irplus		(1,469)	(3,607)	(3,585)	(3,573)	(3,568)	(3,567)	
LAKEWAY	TRAVIS	COLORADO	Conservation		702	1,652	2,408	3,052	3,640	3,921	
LAKEWAY	TRAVIS	COLORADO	Drought Management	20%	1,395	1,823	1,819	1,816	1,815	1,815	
LAKEWAY	TRAVIS	COLORADO	Water Purchase from Travis County WCID #17	LCRA System	1,000	1,000	1,000	1,000	1,000	1,000	
LAKEWAY	TRAVIS	COLORADO	Expansion of Groundwater Supply	Trinity	500	500	500	500	500	500	
	•	Remaining Surplu	s/Shortage		2,128	1,368	2,142	2,795	3,387	3,669	
		Shortage/Su	Irplus		0	0	0	(3,336)	(9,347)	(15,976)	
LEANDER	TRAVIS	COLORADO	LCRA Contract Amendment	LCRA System	0	0	0	3,336	9,347	15,976	
		Remaining Surplu	s/Shortage		0	0	0	0	0	0	
		Shortage/Su	Irplus		76	30	(14)	(66)	(113)	(157)	
LOOP 360 WSC	TRAVIS	COLORADO	Conservation		116	224	333	441	546	648	
LOOP 360 WSC	TRAVIS	COLORADO	Drought Management	15%	176	183	190	197	204	211	
		Remaining Surplu	s/Shortage		192	254	319	375	433	491	
		Shortage/Su	Irplus		0	0	0	0	0	0	
LOST CREEK MUD	TRAVIS	COLORADO	Conservation		108	137	171	215	254	294	
LOST CREEK MUD	TRAVIS	COLORADO	Drought Management	20%	218	214	211	211	211	211	
		Remaining Surplu	s/Shortage		326	351	382	426	465	505	
		Shortage/Su	Irplus		2,316	757	357	(94)	(494)	(867)	
MANOR	TRAVIS	COLORADO	Drought Management	15%	171	234	294	362	422	477	
MANOR	TRAVIS	COLORADO	Expansion of Groundwater Supply	Trinity	0	600	600	600	600	600	
MANOR	TRAVIS	COLORADO	Water Purchase from Manville WSC		0	0	0	1,000	1,000	1,000	
		Remaining Surplu	s/Shortage		2,487	1,591	1,251	1,868	1,528	1,210	
		Shortage/Su	irplus		1,525	873	182	(568)	(1,286)	(2,346)	
MANVILLE WSC	TRAVIS	COLORADO	Drought Management	15%	448	541	630	733	825	911	
MANVILLE WSC	TRAVIS	COLORADO	Expansion of Groundwater Supply	Trinity	0	0	0	1,000	1,000	1,000	
MANVILLE WSC	TRAVIS	COLORADO	New LCRA Contract	LCRA System	0	0	0	500	2,000	2,000	
		Remaining Surplu	s/Shortage		1,973	1,414	812	1,665	2,539	1,565	
MANVILLE WSC	TRAVIS	COLORADO	Water Sale to Manor		0	0	0	(1,000)	(1,000)	(1,000)	
	Rema	aining Surplus/Sho	rtage After Sales		1,973	1,414	812	665	1,539	565	
		<u> </u>							•		
		Shortage/Su	irpius		0	0	0	0	0	0	
NORTH AUSTIN MUD #1	TRAVIS	ICOLORADO	Drought Management	15%	12	12	12	11	11	11	
		Remaining Surplu	s/Shortage		12	12	12	11	11	11	

						Water Ma	nagement	Strategies (ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Shortago/Si	Induc		220	220	220	220	220	220
	TDAVIS		Drought Management	15%	104	120	135	152	167	120
NORTHOWN MOD	TRAVIS	Remaining Surplu		1370	104	120	133	102	506	510
		Remaining Surplu	a/ononage		443	433	4/4	491	500	519
		Shortage/Su	urplus		(605)	(4,935)	(9.073)	(13.727)	(17.872)	(21,741)
PFLUGERVILLE	TRAVIS	COLORADO	Conservation		604	2,105	2,625	3,029	3,514	3,966
PFLUGERVILLE	TRAVIS	COLORADO	Drought Management	25%	3,194	4,276	5,311	6,474	7,503	8,463
PFLUGERVILLE	TRAVIS	COLORADO	Reuse	Reuse	500	1.000	2.000	2.000	4.000	4.000
PFLUGERVILLE	TRAVIS	COLORADO	LCRA Contract Amendment	LCRA System	0	0	0	3,000	3,000	6,000
PFLUGERVILLE	TRAVIS	COLORADO	Expansion of Groundwater Supply	Edwards (BFZ)	0	0	1,000	1,000	1,000	1,000
	•	Remaining Surplu	is/Shortage	· · · · · ·	3,693	2,446	1,863	1,776	1,145	1,688
										·
		Shortage/Su	Jrplus		13	(83)	(174)	(278)	(369)	(455)
POINT VENTURE	TRAVIS	COLORADO	Conservation		34	82	139	191	241	301
POINT VENTURE	TRAVIS	COLORADO	Drought Management	15%	52	66	80	96	109	122
POINT VENTURE	TRAVIS	COLORADO	LCRA Contract Amendment	LCRA System	0	100	100	300	300	300
		Remaining Surplu	is/Shortage		99	165	145	309	281	268
		Shortago/Si	urolue		0	(270)	(276)	(275)	(276)	(270)
	TRAVIS		Conservation		38	(379)	(370)	(373)	104	(370)
ROLLINGWOOD			Drought Management	15%	58	57	56	56	56	57
ROLLINGWOOD			New I CRA Contract	I CRA System		400	400	400	400	400
KOLLINGWOOD	TIXAVIS	Remaining Surplu	Is/Shortage	LONA System	96	145	159	172	184	400 197
		rtomaning Calpio				140	100		104	101
		Shortage/Su	Jrplus		0	0	0	0	0	0
ROUND ROCK	TRAVIS	COLORADO	Conservation		13	11	10	8	9	10
ROUND ROCK	TRAVIS	COLORADO	Refer to Region G Plan							
		Remaining Surplu	is/Shortage		13	11	10	8	9	10
		Shortogo/S	relue		0		0	0	0	0
			I Concervation		0	16	0	0	0	0
			Drought Monogement	150/	30	10	111	110	110	110
SHADT HOLLOW MOD	TRAVIS			15%	117	114	111	110	110	110
		Remaining Surplu	is/Shortage		100	130	111	110	110	110
		Shortage/Su	Irplus		27	(472)	(579)	(700)	(807)	(907)
SUNSET VALLEY	TRAVIS	COLORADO	Conservation		38	90	158	241	305	366
SUNSET VALLEY	TRAVIS	COLORADO	Drought Management	30%	116	150	182	218	250	280
SUNSET VALLEY	TRAVIS	COLORADO	Edwards/Trinity ASR		0	200	200	200	200	200
SUNSET VALLEY	TRAVIS	COLORADO	Development of New Groundwater	Trinity	0	0	200	200	200	200
SUNSET VALLEY	TRAVIS	COLORADO	New LCRA Contract	LCRA System	0	715	715	715	715	715
		Remaining Surplu	is/Shortage		181	683	876	874	863	854

						Water Ma	nagement	Strategies (ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
		Shortogo/Si	reluc		04	90	02	04	05	05
	TDAV/IC		Concervation		144	272	92	94 407	90 591	90
		COLORADO	Drought Monogoment	150/	217	212	216	407	216	216
	TRAVIS	Remaining Surplu		15%	217	579	604	707	210	976
		Remaining Surplu	3/Shonage		443	578	034	191	092	570
		Shortage/Su	Irplus		1.207	810	435	13	(361)	(710)
TRAVIS COUNTY MUD #4	TRAVIS	COLORADO	Conservation		262	564	912	1,302	1,705	2,114
TRAVIS COUNTY MUD #4	TRAVIS	COLORADO	Drought Management	20%	522	602	677	762	837	907
		Remaining Surplu	s/Shortage		1.469	1.374	1.347	1.315	1.344	1.404
		<u> </u>	5		,	7-	7-	,	7-	, -
		Shortage/Su	Irplus		0	(2,428)	(2,715)	(3,044)	(3,341)	(3,619)
TRAVIS COUNTY WCID #10	TRAVIS	COLORADO	Conservation		213	445	707	996	1,316	1,533
TRAVIS COUNTY WCID #10	TRAVIS	COLORADO	Drought Management	25%	532	607	679	761	835	905
TRAVIS COUNTY WCID #10	TRAVIS	COLORADO	New LCRA Contract	LCRA System	0	3,000	3,000	3,000	3,000	3,000
	•	Remaining Surplu	s/Shortage		745	1,624	1,671	1,713	1,810	1,819
		Shortage/Su	Irplus		(302)	(1,904)	(2,868)	(3,038)	(3,330)	(3,693)
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	Conservation		408	890	1,420	1,943	2,404	4,645
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	Drought Management	15%	1,268	1,508	1,653	1,678	1,722	1,776
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	LCRA Contract Amendment	LCRA System	2,000	3,000	3,000	3,000	3,000	3,000
		Remaining Surplu	s/Shortage		3,374	3,494	3,205	3,583	3,796	5,728
TRAVIS COUNTY WCID #17	TRAVIS	COLORADO	Water Sale to Lakeway	LCRA System	(1,000)	(1,000)	(1,000)	(1,000)	(1,000)	(1,000)
	Rem	naining Surplus/Sho	rtage After Sales	-	2,374	2,494	2,205	2,583	2,796	4,728
		Shortage/Su	Irplus		613	469	329	163	11	(131)
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	Conservation		60	95	87	87	96	104
TRAVIS COUNTY WCID #18	TRAVIS	COLORADO	Drought Management	15%	168	190	211	236	259	280
		Remaining Surplu	s/Shortage		841	754	627	486	366	253
		Shortage/Su	Irplus		0	0	0	0	0	0
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	Conservation		50	92	131	166	199	229
TRAVIS COUNTY WCID #19	TRAVIS	COLORADO	Drought Management	20%	100	99	99	99	99	99
		Remaining Surplu	s/Shortage		150	191	230	265	298	328

						Water Ma	nagement	Strategies (a	ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
	-	Shortage/Su	Irplus		545	548	551	552	553	553
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	Conservation		59	110	153	197	234	268
TRAVIS COUNTY WCID #20	TRAVIS	COLORADO	Drought Management	20%	118	117	117	117	116	116
		Remaining Surplu	s/Shortage		722	775	821	866	903	937
-	-	Shortage/Su	Irplus		0	(13)	(25)	(40)	(54)	(66)
VOLENTE	TRAVIS	COLORADO	Drought Management	5%	4	4	5	6	7	7
VOLENTE	TRAVIS	COLORADO	New LCRA Contract	LCRA System	142	142	142	142	142	142
		Remaining Surplu	s/Shortage		146	133	122	108	95	83
		Shortage/Su	Irplus		0	0	0	0	0	0
WELLS BRANCH MUD	TRAVIS	COLORADO	Drought Management	5%	82	80	79	78	78	78
	_	Remaining Surplu	s/Shortage		82	80	79	78	78	78
			-				I		I	
		Shortage/Su	Irplus		41	(1,550)	(1,539)	(1,533)	(1,532)	(1,532)
WEST LAKE HILLS	TRAVIS	COLORADO	Conservation		157	286	398	505	609	700
WEST LAKE HILLS	TRAVIS	COLORADO	Drought Management	20%	313	310	308	307	306	306
WEST LAKE HILLS	TRAVIS	COLORADO	New LCRA Contract	LCRA System	0	1,300	1,300	1,300	1,300	1,300
		Remaining Surplu	s/Shortage		511	346	467	579	683	774
		Shortage/Su	irplus		421	68	(269)	(650)	(986)	(1.300)
WEST TRAVIS COUNTY PUA	TRAVIS	COLORADO	Conservation		234	505	809	1,164	1,526	1,900
WEST TRAVIS COUNTY PUA	TRAVIS	COLORADO	Drought Management	20%	473	544	611	688	755	818
WEST TRAVIS COUNTY PUA	TRAVIS	COLORADO	LCRA Contract Amendment	LCRA System	0	500	500	1,000	1,000	1,000
		Remaining Surplu	s/Shortage		1,128	1,617	1,651	2,202	2,295	2,418
WEST TRAVIS COUNTY PUA	TRAVIS	COLORADO	Sale to Bee Cave	LCRA System	(300)	(300)	(600)	(600)	(800)	(800)
	Ren	naining Surplus/Sho	rtage After Sales		828	1,317	1,051	1,602	1,495	1,618
		Shortago/Si	Irolue		2 626	(1.274)	(1 274)	(6 5 4 2)	(14.042)	(21 520)
	TDAV/IC		COA Direct Dougo	Dougo	2,020	7.500	(1,374)	(0,545)	(14,043)	(21,550)
STEAM ELECTRIC POWER				Reuse	3,500	7,500	7,500	8,500	9,500	11,000
STEAM ELECTRIC FOWER	TRAVIS	Remaining Surplu	s/Shortage		6 1 2 6	6 1 2 6	6 126	1 957	4,545	11,030
			s/Shortage		0,120	0,120	0,120	1,957	v	0
		Shortage/Su	Irplus		77	62	51	39	25	12
EAST BERNARD	WHARTON	BRAZOS- COLORADO	Conservation		19	29	42	56	78	97
EAST BERNARD	WHARTON	BRAZOS- COLORADO	Drought Management	15%	57	59	61	63	65	67
		Remaining Surplu	s/Shortage		153	150	154	158	168	176

				-		Water Ma	nagement	Strategies	(ac-ft/yr)	
WUG Name	County	River Basin	Water Management Strategy Name	Source Name	2020	2030	2040	2050	2060	2070
			1	I	500			100		
					590	553	524	488	447	410
WHARTON	WHARTON	BRAZOS- COLORADO	Conservation		76	88	116	113	116	120
WHARTON	WHARTON	BRAZOS- COLORADO	Drought Management	15%	165	171	175	181	187	192
		Remaining Surplu	is/Shortage		831	812	815	782	750	722
		Shortage/Su	urplus		93	73	58	39	19	0
WHARTON	WHARTON	COLORADO	Conservation		39	46	60	58	60	62
WHARTON	WHARTON	COLORADO	Drought Management	15%	85	88	90	93	96	99
		Remaining Surplu	is/Shortage		217	207	208	190	175	161
		0 1				-			-	-
		Shortage/Su	Jrplus		(69,536)	(66,452)	(63,453)	(60,534)	(57,693)	(54,929)
IRRIGATION	WHARTON	BRAZOS- COLORADO	Drought Management		15,042	14,637	14,243	13,860	13,487	13,125
IRRIGATION	WHARTON	BRAZOS- COLORADO	Conservation - On farm Conservation		4,153	5,416	6,689	7,973	9,268	10,577
IRRIGATION	WHARTON	BRAZOS- COLORADO	Conservation - Irrigation Conveyance Improvements		1,080	3,541	6,062	8,602	11,164	13,602
IRRIGATION	WHARTON	BRAZOS- COLORADO	Conservation - Sprinkler Irrigation		297	1,489	2,989	3,750	3,750	3,750
IRRIGATION	WHARTON	BRAZOS- COLORADO	COA Return Flows		4,277	4,458	5,095	5,536	5,865	6,696
IRRIGATION	WHARTON	BRAZOS- COLORADO	LCRA WMP - Interruptible Water	LCRA System	10,674	4,937	1,025	533	0	0
		Remaining Surplu	is/Shortage	1	(34,013)	(31,974)	(27,350)	(20,280)	(14,159)	(7,179)
		Shortage/Su	urplus		(19,287)	(17,632)	(16,021)	(14,453)	(12,927)	(11,443)
IRRIGATION	WHARTON	COLORADO	Drought Management		8,078	7,861	7,649	7,443	7,243	7,048
IRRIGATION	WHARTON	COLORADO	Conservation - On farm Conservation		1,152	1,437	1,689	1,904	2,077	2,203
IRRIGATION	WHARTON	COLORADO	Conservation - Irrigation Conveyance Improvements		299	940	1,531	2,054	2,501	2,834
IRRIGATION	WHARTON	COLORADO	Conservation - Sprinkler Irrigation		82	395	755	895	895	895
IRRIGATION	WHARTON	COLORADO	COA Return Flows		845	754	669	453	62	0
IRRIGATION	WHARTON	COLORADO	LCRA WMP - Interruptible Water	LCRA System	2,109	835	135	44	0	0
	1	Remaining Surplu	is/Shortage	1	(6,722)	(5,410)	(3,593)	(1,660)	(149)	1,537
		5 1	, ,		· · · · · ·	1 A A	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	1 1	,

	Water Ma	nagament	Stratagios	oo fthur)	
	water wa	nagement	Strategies (ac-ivyr)	
2020	2030	2040	2050	2060	2070
(00.550)	(10,500)	(10.014)	(47,705)	(10.004)	(45.000)
(20,559)	(19,589)	(18,644)	(17,725)	(16,831)	(15,960)
4,735	4,608	4,484	4,363	4,246	4,132
1,228	1,597	1,965	2,334	2,704	3,073
319	1,044	1,781	2,519	3,257	3,952
88	439	878	1,098	1,098	1,098
1,239	1,282	1,452	1,557	1,619	1,788
3,093	1,420	292	150	0	0
(9,857)	(9,199)	(7,792)	(5,704)	(3,907)	(1,917)
246	184	109	17	(94)	(200)
0	0	0	0	200	200
246	184	109	17	106	0
-					
0	150	320	517	567	0
770	954	1,184	1,432	1,713	2,021
770	1,104	1,504	1,949	2,280	2,021
0	0	0	0	0	0
116	112	109	107	107	107
116	112	109	107	107	107
0	0	0	0	0	0
0	0	0	0	0	0
6	6	6	6	6	6
	2020 (20,559) 4,735 1,228 319 88 1,239 3,093 (9,857) 246 0 246 0 246 0 246 0 770 770 770 770 0 116 116 116 6 6	Water Ma 2020 2030 (20,559) (19,589) 4,735 4,608 1,228 1,597 319 1,044 88 439 1,239 1,282 3,093 1,420 (9,857) (9,199) 246 184 0 0 246 184 0 0 770 954 770 1,104 0 0 116 112 0 0 0 0	Water Management 2020 2030 2040 (20,559) (19,589) (18,644) 4,735 4,608 4,484 1,228 1,597 1,965 319 1,044 1,781 88 439 878 1,239 1,282 1,452 3,093 1,420 292 (9,857) (9,199) (7,792) 246 184 109 0 0 0 246 184 109 0 0 0 0 150 320 770 954 1,184 770 1,104 1,504 0 0 0 0 0 0 0 0 0 116 112 109 116 112 109 0 0 0 0 0 0 0 0 0	Water Management Strategies (2020 2030 2040 2050 (20,559) (19,589) (18,644) (17,725) 4,735 4,608 4,484 4,363 1,228 1,597 1,965 2,334 319 1,044 1,781 2,519 88 439 878 1,098 1,239 1,282 1,452 1,557 3,093 1,420 292 150 (9,857) (9,199) (7,792) (5,704) 246 184 109 17 0 0 0 0 0 246 184 109 17 0 0 0 0 0 0 150 320 517 770 954 1,184 1,432 770 1,104 1,504 1,949 0 0 0 0 0 0 0 0 0 0 <td>Water Management Strategies (ac-ft/yr) 2020 2030 2040 2050 2060 (20,559) (19,589) (18,644) (17,725) (16,831) 4,735 4,608 4,484 4,363 4,246 1,228 1,597 1,965 2,334 2,704 319 1,044 1,781 2,519 3,257 88 439 878 1,098 1,098 1,239 1,282 1,452 1,557 1,619 3,093 1,420 292 150 0 (9,857) (9,199) (7,792) (5,704) (3,907) 246 184 109 17 (94) 0 0 0 0 200 246 184 109 17 (94) 0 0 0 0 200 246 184 109 17 106 0 1,104 1,504 1,949 2,280 0</td>	Water Management Strategies (ac-ft/yr) 2020 2030 2040 2050 2060 (20,559) (19,589) (18,644) (17,725) (16,831) 4,735 4,608 4,484 4,363 4,246 1,228 1,597 1,965 2,334 2,704 319 1,044 1,781 2,519 3,257 88 439 878 1,098 1,098 1,239 1,282 1,452 1,557 1,619 3,093 1,420 292 150 0 (9,857) (9,199) (7,792) (5,704) (3,907) 246 184 109 17 (94) 0 0 0 0 200 246 184 109 17 (94) 0 0 0 0 200 246 184 109 17 106 0 1,104 1,504 1,949 2,280 0

2016 LCRWPG WATER PLAN

APPENDIX 5C

WATER MANAGEMENT STRATEGY COST SUMMARY TABLES

Cost Estimate Summary Water Supply Project Option 41518 Prices I CRA - Enhanced Municipal and Industrial Conserva	tion
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$45,875,000
TOTAL COST OF FACILITIES	\$45,875,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$16,056,000
Environmental & Archaeology Studies and Mitigation	\$U \$0
Land Acquisition and Surveying (U acres)	\$U
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$2,168,000</u>
TOTAL COST OF PROJECT	\$64,099,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$5,364,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (0 kW-hr @ 0.09 \$/kW-hr)	\$0
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$5,364,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	20 000
Annual Cost of Water (\$ per acft)	\$268
Annual Cost of Water (\$ per 1.000 gallons)	\$0 82
Note: One or more cost element has been calculated externally	\$0.0Z

JB

4/14/2015

Cost Estimato Summary	
Water Supply Project Option	
41518 Prices	
LCRA - On-site Groundwater to Fayette Power Plant	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$768,000
Transmission Pipeline (0 in dia., 1 miles)	\$83,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,103,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,954,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$680,000
Environmental & Archaeology Studies and Mitigation	\$22,000
Land Acquisition and Surveying (6 acres)	\$0
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$93,000</u>
TOTAL COST OF PROJECT	\$2,749,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$230,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$31,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (950861 kW-hr @ 0.09 \$/kW-hr)	\$86,000
Purchase of Water (700 acft/yr @ $0.$ \$/acft)	¢00,000 \$0
	\$347 000
	ф0+1 ,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	700
Annual Cost of Water (\$ per acft)	\$496
Annual Cost of Water (\$ per 1,000 gallons)	\$1.52
CW	4/22/2015

Cost Estimate Summary Water Supply Project Option	
41518 Prices	- 4
LURA - Off-site Groundwater to Fayette Power Plan)t
Cost based on ENR CCI 9552 for 41518 and	
a PPI 01 18/ 10/ 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$1,380,000
Transmission Pipeline (0 in dia., 24 miles)	\$5,164,000
Transmission Pump Station(s) & Storage Tank(s)	\$4,891,000
Well Fields (Wells, Pumps, and Piping)	\$2,040,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$13,475,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$4,458,000
Environmental & Archaeology Studies and Mitigation	\$755,000
Land Acquisition and Surveying (138 acres)	\$739,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$680,000</u>
TOTAL COST OF PROJECT	\$20,107,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$1,683,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$217,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (9805554 kW-hr @ 0.09 \$/kW-hr)	\$882,000
Purchase of Water (2500 acft/yr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$2,782,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	2,500
Annual Cost of Water (\$ per acft)	\$1,113
Annual Cost of Water (\$ per 1,000 gallons)	\$3.41
CW	4/22/2015

Cost Estimato Summary	
COSt Estimate Summary Water Supply Project Option	
41518 Prices	
LCRA - Expanded Use of Groundwater in Bastrop Cou	unty
Cost based on ENR CCI 9552 for 41518 and	-
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0 \$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$757,000
Transmission Pipeline (0 in dia., 4 miles)	\$528,000
Transmission Pump Station(s) & Storage Tank(s)	\$936,000
Well Fields (Wells, Pumps, and Piping)	\$931,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$3,152,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,077,000
Environmental & Archaeology Studies and Mitigation	\$153,000
Land Acquisition and Surveying (8 acres)	\$27,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$155,000</u>
TOTAL COST OF PROJECT	\$4,564,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$382,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$54,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (206915 kW-hr @ 0.09 \$/kW-hr)	\$19,000
Purchase of Water (300 acft/yr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$455,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	300
Annual Cost of Water (\$ per acft)	\$1,517
Annual Cost of Water (\$ per 1,000 gallons)	\$4.65
	100/0045
CW	4/22/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
LCRA - Lane City Reservoir	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool 40000 acft, 1125 acres)	\$95,100,000
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$6,800,000
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$30,200,000
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$24,700,000
TOTAL COST OF FACILITIES	\$156,800,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$30,400,000
Environmental & Archaeology Studies and Mitigation	\$8,900,000
Land Acquisition and Surveying (1130 acres)	\$15,100,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$7,393,000</u>
TOTAL COST OF PROJECT	\$218,593,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$5,344,000
Reservoir Debt Service (5.5 percent, 40 years)	\$9,643,000
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$925,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$1,427,000
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (29869081 kW-hr @ 0.09 \$/kW-hr)	\$2,688,000
Purchase of Water (90000 acft/yr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$20,027,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	90,000
Annual Cost of Water (\$ per acft)	\$223
Annual Cost of Water (\$ per 1,000 gallons)	\$0.68
Note: One or more cost element has been calculated externally	
CW	4/17/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices LCRA - Prairie Reservoir Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Estimated Costs for Facilities Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Estimated Costs for Facilities Cost Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 952 for 41518 Cost based on ENR CCI 9502 for 41518 Cost based on ENR CCI 950 for 41518 Off-Channel
Attail Strikes Option Attail Prices LCRA - Prairie Reservoir Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Estimated Costs for Facilities Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Estimated Costs for Facilities Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Estimated Costs for Facilities Cost based Costs for Facilities Dam and Reservoir (Conservation Pool acft, acres) \$0 Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres) \$269,000,000 Terminal Storage (Conservation Pool acft, acres) \$0 Intake Pump Stations (0 MGD) \$0 Transmission Pipeline (0 in dia., 3 miles) \$0 Transmission Pump Station(s) & Storage Tank(s) \$0 Well Fields (Wells, Pumps, and Piping) \$0 Storage Tanks (Other Than at Booster Pump Stations) \$0 Water Treatment Plant (0 MGD) \$0 Integration, Relocations, & Other \$0
LCRA - Prairie ReservoirCost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518Estimated Costs for FacilitiesItemCAPITAL COSTDam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518ItemEstimated Costs for FacilitiesItemSolutionCAPITAL COST\$0Dam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
a PPI of 187 for 41518LtemEstimated Costs for FacilitiesCAPITAL COST\$0Dam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
ItemEstimated Costs for FacilitiesCAPITAL COSTDam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Itemfor FacilitiesCAPITAL COSTDam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
CAPITAL COSTDam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Dam and Reservoir (Conservation Pool acft, acres)\$0Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)\$269,000,000Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Terminal Storage (Conservation Pool acft, acres)\$0Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Intake Pump Stations (0 MGD)\$0Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Transmission Pipeline (0 in dia., 3 miles)\$0Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Transmission Pump Station(s) & Storage Tank(s)\$0Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Well Fields (Wells, Pumps, and Piping)\$0Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Storage Tanks (Other Than at Booster Pump Stations)\$0Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Water Treatment Plant (0 MGD)\$0Integration, Relocations, & Other\$0
Integration, Relocations, & Other \$0
TOTAL COST OF FACILITIES \$269,000,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,
and Contingencies (30% for pipes & 35% for all other facilities) \$94,150,000
Environmental & Archaeology Studies and Mitigation \$73,000
Land Acquisition and Surveying (1130 acres)\$56,000
Interest During Construction (4% for 1 years with a 1% ROI) <u>\$12,716,000</u>
TOTAL COST OF PROJECT \$375,995,000
ANNUAL COST
Debt Service (5.5 percent, 20 years) \$6,000
Reservoir Debt Service (5.5 percent, 40 years) \$23,427,000
Operation and Maintenance
Intake, Pipeline, Pump Station (1% of Cost of Facilities) \$0
Dam and Reservoir (1.5% of Cost of Facilities) \$4,035,000
Water Treatment Plant (2.5% of Cost of Facilities) \$0
Pumping Energy Costs (3746780 kW-hr @ 0.09 \$/kW-hr) \$337,000
Purchase of Water (90000 acft/yr @ 0 \$/acft) <u>\$0</u>
TOTAL ANNUAL COST \$27,805,000
Available Project Yield (acft/vr), based on a Peaking Factor of 1 18,000
Annual Cost of Water (\$ per acft) \$1.545
Annual Cost of Water (\$ per 1.000 gallons) \$4.74
Note: One or more cost element has been calculated externally
NDH 4/17/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
LCRA - Mid-Basin OCR	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
	* 0
Dam and Reservoir (Conservation Pool actt, acres)	\$U €242.000.000
Off-Channel Storage/Ring Dike (Conservation Pool 40000 actt, 1125 acres)	\$213,000,000
lerminal Storage (Conservation Pool actt, acres)	\$U \$0
Intake Pump Stations (0 MGD)	\$U \$0
Transmission Pipeline (0 in dia., 3 miles)	\$U
Transmission Pump Station(s) & Storage Tank(s)	\$U
Well Fields (Wells, Pumps, and Piping)	\$U
Storage Tanks (Other Than at Booster Pump Stations)	\$U
Water Treatment Plant (0 MGD)	\$U
Integration, Relocations, & Other	\$U
TOTAL COST OF FACILITIES	\$213,000,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$74,550,000
Environmental & Archaeology Studies and Mitigation	\$73,000
Land Acquisition and Surveying (1130 acres)	\$56,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$10,070,000</u>
TOTAL COST OF PROJECT	\$297,749,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$6,000
Reservoir Debt Service (5.5 percent, 40 years)	\$18,551,000
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$3,195,000
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (3746780 kW-hr @ 0.09 \$/kW-hr)	\$337,000
Purchase of Water (90000 acft/vr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$22,089,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	18,000
Annual Cost of Water (\$ per acft)	\$1,227
Annual Cost of Water (\$ per 1,000 gallons)	\$3.77
Note: One or more cost element has been calculated externally	
NDH	4/17/2015

Cost Estimate Summary	
Cost Estimate Summary Water Supply Project Option	
41518 Prices	
LCRA - Excess Flows OCR	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool 40000 acft, 1125 acres)	\$213,000,000
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 3 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$213,000,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$74,550,000
Environmental & Archaeology Studies and Mitigation	\$73,000
Land Acquisition and Surveying (1130 acres)	\$56,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$10,070,000</u>
TOTAL COST OF PROJECT	\$297,749,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$6,000
Reservoir Debt Service (5.5 percent, 40 years)	\$18,551,000
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$3,195,000
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (3472371 kW-hr @ 0.09 \$/kW-hr)	\$313,000
Purchase of Water (90000 acft/yr @ 0 \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$22,065,000
	* / /
Available Project Yield (acft/yr), based on a Peaking Factor of 1	15,257
Annual Cost of Water (\$ per acft)	\$1,446
Annual Cost of Water (\$ per 1,000 gallons)	\$4.44
Note: One or more cost element has been calculated externally	
NDH	4/17/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices City of Austin - Direct Reuse (Municipal, Manufacturing, and Steam-Electric)

Sity of Austin - Direct Neuse (municipal, manufacturing, and Steam

	Estimated Costs
Item	for Facilities
Intake Pump Stations (0 MGD)	\$42,566,000
Transmission Pipeline (0 in dia., 10 miles)	\$242,368,000
Storage Tanks (Other Than at Booster Pump Stations)	\$52,338,000
Water Treatment Plant	\$42,942,000
TOTAL COST OF FACILITIES	\$380,214,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$120,956,000
Environmental & Archaeology Studies and Mitigation	\$250,000
Land Acquisition and Surveying (3 acres)	\$16,624,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$18,132,000</u>
TOTAL COST OF PROJECT	\$536,176,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$44,867,000
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$4,011,000
Water Treatment Plant (2.5% of Cost of Facilities)	\$2,096,000
Pumping Energy Costs (8907397 kW-hr @ 0.09 \$/kW-hr)	\$802,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$51,776,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	38,429
Annual Cost of Water (\$ per acft)	\$1,347
Annual Cost of Water (\$ per 1,000 gallons)	\$4.13
Note: One or more cost element has been calculated externally	
JB	10/13/2015

Cost Estimate Summary Water Supply Project Option	
41518 Prices	
COA - ASR	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
	0.2
Dam and Reservoir (Conservation Pool actt, acres)	υ¢ 02
Off-Channel Storage/Ring Dike (Conservation Pool acit, acres)	U¢ O2
lerminal Storage (Conservation Pool acrt, acres)	υφ 02
Intake Pump Stations (UMGD)	ው የድፍ 000 000
Transmission Pipeline (U in dia., 5 miles)	υυυ,υυυ,σσφ ΦΦ
Iransmission Pump Station(s) & Storage Tank(s)	U⊄ 000 000 0010
Well Fields (Wells, Pumps, and Piping)	
Storage Tanks (Other Than at Booster Pump Stations)	
Water Treatment Plant (2 MGD)	\$10,000,000 ¢0
	00 \$005 000 000
TOTAL COST OF FACILITIES	\$225,000,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other tacilities)	\$75,500,000
Environmental & Archaeology Studies and Mitigation	\$565,000
Land Acquisition and Surveying (29 acres)	\$689,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$10,562,000</u>
TOTAL COST OF PROJECT	\$312,316,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$26,134,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$2,150,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$1,065,000
Pumping Energy Costs (9288201 kW-hr @ 0.09 \$/kW-hr)	\$836,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$30,185,000
Available Project Yield (acft/vr). based on a Peaking Factor of 1	50.000
Annual Cost of Water (\$ per acft)	\$604
Annual Cost of Water (\$ per 1,000 gallons)	\$1.85
Note: One or more cost element has been calculated externally	
NDH	3/27/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
COA - Longhorn Dam Automation	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
ltom	Estimated Costs for Facilities
Dam and Reservoir (Conservation Pool, acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft acres)	\$0 \$0
Terminal Storage (Conservation Pool, acft, acres)	ψ0 \$0
Intake Pump Stations (0 MGD)	ψ0 \$0
Transmission Pineline (0 in dia 0 miles)	φ0 \$0
Transmission Plump Station(s) & Storago Tank(s)	ው ድር
Wall Fields (Walls, Rumps, and Pining)	ው ድር
Storago Tanks (Othor Than at Boostor Pump Stations)	ው ድር
Water Treatment Plant (0 MCD)	ው የ በ
Integration Polocations & Other	ምር ይረሻ በሀገ
	\$741,000 \$741,000
TOTAL COST OF FACILITIES	\$741,000
Engineering and Feasibility Studies Legal Assistance Financing Bond Counsel	
and Contingencies (30% for pipes & 35% for all other facilities)	\$259.000
Environmental & Archaeology Studies and Mitigation	\$0
Land Acquisition and Surveying (0 acres)	\$0
Interest During Construction (4% for 1 years with a 1% ROI)	\$36.000
TOTAL COST OF PROJECT	\$1.036.000
	÷ 1,000,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$87,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	, -
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0 \$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0 \$0
Pumping Energy Costs (0 kW-hr @ 0.09 \$/kW-hr)	\$0 \$0
Purchase of Water (acft/vr @ \$/acft)	\$0 \$0
	\$87 000
	<i>401,000</i>
Available Project Yield (acft/yr), based on a Peaking Factor of 1	3,000
Annual Cost of Water (\$ per acft)	\$29
Annual Cost of Water (\$ per 1,000 gallons)	\$0.09
Note: One or more cost element has been calculated externally	
KP	4/20/2015

Cost Estimato Summary	
Water Supply Project Option	
41518 Prices	
COA - Rainwater Harvesting	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
	IOF racilities
CAPITAL CODI	\$0
Off_Channel Storage/Ring Dike (Conservation Pool acft acres)	ምር \$0
Torminal Storage (Conservation Pool act, acres)	Ψ0 \$0
Intele Dumo Stations (0 MCD)	ምር ይህ
Transmission Dipoling (0 in dia 0 milos)	ምር ወ
Transmission Fipeline (0 in dia., 0 miles)	Ψ0 \$0
Mall Fields (Malls, Dumps, and Dising)	ቃ ር
Well Fields (Wells, Pullips, and Fipling)	ቃ ር
Storage Tanks (Other Than at booster Pump Stations)	Φ 0
Water Treatment Plant (UNIGD)	₽ Φ000 167 000
	3090, 107,000
TOTAL COST OF FACILITIES	\$630,107,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$0
Environmental & Archaeology Studies and Mitigation	\$0
Land Acquisition and Surveying (0 acres)	\$0
Interest During Construction (4% for 0 years with a 1% ROI)	<u>\$0</u>
TOTAL COST OF PROJECT	\$690,167,000
ANNUAL COST	
Debt Service (5.5 percent. 20 vears)	\$57,753,000
Reservoir Debt Service (5.5 percent, 40 vears)	\$0
Operation and Maintenance	· -
Intake Pipeline Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (0 kW-hr $@$ 0.09 $\frac{k}{k}$ - hr)	\$0 \$0
Purchase of Water (0 actt/vr @ 0 \$/actt)	\$0 \$0
	<u>*~</u> \$57,753,000
	ψοι,ιου,υου
Available Project Yield (acft/yr), based on a Peaking Factor of 1	16,564
Annual Cost of Water (\$ per acft)	\$3,487
Annual Cost of Water (\$ per 1,000 gallons)	\$10.70
Note: One or more cost element has been calculated externally	
NDH	4/15/2015

Cost Fatimate Summary	
Cost Estimate Summary Water Supply Project Option	
41518 Prices	
City of Austin - Walter E. Long Enhanced Storage	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$6,735,000
Transmission Pipeline (0 in dia., 7 miles)	\$7,293,000
Transmission Pump Station(s) & Storage Tank(s)	\$4,792,000
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$3,500,000
TOTAL COST OF FACILITIES	\$22,320,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$7,448,000
Environmental & Archaeology Studies and Mitigation	\$195,000
Land Acquisition and Surveying (8 acres)	\$28,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,050,000</u>
TOTAL COST OF PROJECT	\$31,041,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$2,597,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$342,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (13111709 kW-hr @ 0.09 \$/kW-hr)	\$1,180,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$4,119,000
Assolution Device (Maria (as (for) have a large a Device a Device of f	00.000
Available Project Yield (acit/yr), based on a Peaking Factor of 1	22,000
Annual Cost of Water (\$ per actt)	\$187
Annual Cost of Water (\$ per 1,000 gallons)	\$0.57
INOTE: Une or more cost element has been calculated externally	A/2/2015
D. roganon	4/2/2015

Cost Estimate Summary	
Water Supply Project Option	
41516 Prices City of Austin City of Austin Decentralization of WW	/SW/
City of Austin - City of Austin Decentralization of WW	/3//
COST based on ENR CCI 9552 for 41518 and	
a FF1 01 187 101 41518	
Item	for Facilities
Dam and Reservoir (Conservation Pool actt_acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool, acft, acres)	¢≎ \$0
Terminal Storage (Conservation Pool acft acres)	¢≎ \$0
Intake Pump Stations (0 MGD)	Ψ ⁰ \$1 619 000
Transmission Pineline (0 in dia 2 miles)	\$510,000
Transmission Pump Station(s) & Storage Tank(s)	¢010,000 \$0
Well Fields (Wells, Pumps, and Pining)	\$0 \$0
Storage Tanks (Other Than at Booster Pump Stations)	\$825.000
Two Water Treatment Plants (1.3 MGD and 1.3 MGD)	\$11 564 000
Integration Relocations & Other	\$1,000,000 \$1,000,000
	\$15 518 000
	φ13,510,000
Engineering and Eessibility Studies, Legal Assistance, Financing, Bond Counsel	
and Contingencies (30% for pipes & 35% for all other facilities)	\$5,406,000
Environmental & Archaeology Studies and Mitigation	\$75,000
Land Acquisition and Surveying (11 acres)	\$36,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$737,000
	\$21,772,000
	<i>41,1,1,2,000</i>
ANNUAL COST	
Debt Service (5.5 percent 20 years)	\$1 822 000
Reservoir Debt Service (5.5 percent 40 years)	\$0
Operation and Maintenance	ΨΟ
Intake Dipoline Dump Station (1% of Cost of Eacilities)	\$54,000
Dom and Pasaryoir (1.5% of Cost of Facilities)	φ04,000 ¢0
Water Treatment Plant (2.5% of Cost of Facilities)	ΨU \$1 156 000
Pumping Energy Costs (200590 kW br $@$ 0.00 \$/kW br	\$1,150,000 \$25,000
Pumping Energy Costs (390300 kW-III \oplus 0.09 ϕ /kW-III)	φ30,000 ¢0
	\$3 067 000
TOTAL ANNUAL COST	\$3,007,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	3.000
Annual Cost of Water (\$ per acft)	\$1,022
Annual Cost of Water (\$ per 1,000 gallons)	\$3.14
Note: One or more cost element has been calculated externally	
CW	3/27/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices	
City of Austin - Capturing Local Inflows from LBL	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
ltem	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$1,285,000
Transmission Pipeline (0 in dia., 0 miles)	\$73,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$750,000
TOTAL COST OF FACILITIES	\$2,108,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$734,000
Environmental & Archaeology Studies and Mitigation	\$7,000
Land Acquisition and Surveying (5 acres)	\$0
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$100,000</u>
TOTAL COST OF PROJECT	\$2,949,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$247,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$38,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (135441 kW-hr @ 0.09 \$/kW-hr)	\$12,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$297,000
Available Project Yield (acft/yr), based on a Peaking Factor of 3	1,000
Annual Cost of Water (\$ per acft)	\$297
Appual Cast of Water (\$ per 1 000 gallons)	<u></u>

 Annual Cost of Water (\$ per 1,000 gallons)
 \$0.91

 Note: One or more cost element has been calculated externally
 \$0.91

 B.Yeganeh
 4/6/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices City of Austin - Indirect Potable Reuse through Lady Bird Lake

Cost based on ENR CCI 9552 for 41518 and

a PPI of 187 for 41518

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 2 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$30,000,000
TOTAL COST OF FACILITIES	\$30,000,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$10,500,000
Environmental & Archaeology Studies and Mitigation	\$50,000
Land Acquisition and Surveying (0 acres)	\$0
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,420,000</u>
TOTAL COST OF PROJECT	\$41,970,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$3,512,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (898939 kW-hr @ 0.09 \$/kW-hr)	\$81,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$3,593,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	20,000
Annual Cost of Water (\$ per acft)	\$180
Annual Cost of Water (\$ per 1,000 gallons)	\$0.55
Note: One or more cost element has been calculated externally	
JB	3/28/2015

AQUA WSC - Bastrop - Carrizo-Wilcox - Expansion of Groundwater Supply

CAPITAL COST Dam and Reservoir (Conservation Pool acft, acres) Off-Channel Storage/Ring Dike (Conservation Pool acft, acres) Terminal Storage (Conservation Pool acft, acres) Intake Pump Stations (7.1 MGD) Transmission Pipeline (20 in dia., 5 miles) Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$0 \$0 \$2,133,000 \$0 \$4,758,000 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
Dam and Reservoir (Conservation Pool acft, acres) Off-Channel Storage/Ring Dike (Conservation Pool acft, acres) Terminal Storage (Conservation Pool acft, acres) Intake Pump Stations (7.1 MGD) Transmission Pipeline (20 in dia., 5 miles) Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$0 \$0 \$2,133,000 \$0 \$4,758,000 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres) Terminal Storage (Conservation Pool acft, acres) Intake Pump Stations (7.1 MGD) Transmission Pipeline (20 in dia., 5 miles) Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$0 \$2,133,000 \$0 \$4,758,000 \$0 \$0 \$0 \$0 \$6,891,000
Terminal Storage (Conservation Pool acft, acres) Intake Pump Stations (7.1 MGD) Transmission Pipeline (20 in dia., 5 miles) Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$0 \$2,133,000 \$0 \$4,758,000 \$0 \$0 \$0 \$6,891,000
Intake Pump Stations (7.1 MGD) Transmission Pipeline (20 in dia., 5 miles) Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$2,133,000 \$0 \$4,758,000 \$0 \$0 \$0 \$6,891,000
Transmission Pipeline (20 in dia., 5 miles) Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$2,133,000 \$0 \$4,758,000 \$0 \$0 \$0 \$6,891,000
Transmission Pump Station(s) & Storage Tank(s) Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$4,758,000 \$0 \$0 \$0 \$6,891,000
Well Fields (Wells, Pumps, and Piping) Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$4,758,000 \$0 \$0 \$0 \$6,891,000
Storage Tanks (Other Than at Booster Pump Stations) Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$0 \$0 \$6,891,000
Water Treatment Plant (0 MGD) Integration, Relocations, & Other	\$0 \$0 \$6,891,000
Integration, Relocations, & Other	\$0 \$6,891,000
	\$6,891,000
TOTAL COST OF FACILITIES	
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$2,305,000
Environmental & Archaeology Studies and Mitigation	\$237,000
Land Acquisition and Surveying (8 acres)	\$13,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$331,000</u>
TOTAL COST OF PROJECT	\$9,777,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$818,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$69,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (1668780 kW-hr @ 0.09 \$/kW-hr)	\$150,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$1,037,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	4,000
Annual Cost of Water (\$ per acft)	\$259
Annual Cost of Water (\$ per 1,000 gallons)	\$0.80
Jeff Dahm	

BASTROP COUNTY WCID #2 - Carrizo-Wilcox - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,514,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,514,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$530,000
Environmental & Archaeology Studies and Mitigation	\$29,000
Land Acquisition and Surveying (1 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$73,000</u>
TOTAL COST OF PROJECT	\$2,150,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$180,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (94022 kW-hr @ 0.09 \$/kW-hr)	\$8,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$203,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	550
Annual Cost of Water (\$ per acft)	\$369
Annual Cost of Water (\$ per 1,000 gallons)	\$1.13
Jeff Dahm	1/29/2015

COUNTY-OTHER 1 - Bastrop - Carrizo-Wilcox - Expansion of Groundwater Supply

ltem	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,514,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,514,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$530,000
Environmental & Archaeology Studies and Mitigation	\$29,000
Land Acquisition and Surveying (1 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$73,000</u>
TOTAL COST OF PROJECT	\$2,150,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$180,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (10238 kW-hr @ 0.09 \$/kW-hr)	\$1,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$196,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	60
Annual Cost of Water (\$ per acft)	\$3,267
Annual Cost of Water (\$ per 1,000 gallons)	\$10.02
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,514,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,514,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$530,000
Environmental & Archaeology Studies and Mitigation	\$29,000
Land Acquisition and Surveying (1 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$73,000
TOTAL COST OF PROJECT	\$2,150,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$180,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (51235 kW-hr @ 0.09 \$/kW-hr)	\$5,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$200,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	300
Annual Cost of Water (\$ per acft)	\$667
Annual Cost of Water (\$ per 1,000 gallons)	\$2.05
Jeff Dahm	4/24/2015

Manufacturing 1 - Bastrop - Carrizo-Wilcox - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,514,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,514,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$530,000
Environmental & Archaeology Studies and Mitigation	\$29,000
Land Acquisition and Surveying (1 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$73,000</u>
TOTAL COST OF PROJECT	\$2,150,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$180,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (33973 kW-hr @ 0.09 \$/kW-hr)	\$3,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$198,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	199
Annual Cost of Water (\$ per acft)	\$995
Annual Cost of Water (\$ per 1,000 gallons)	\$3.05
Jeff Dahm	4/24/2015

County-Other 2 - Blanco - Ellenburger-San Saba - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$546,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$546,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$191,000
Environmental & Archaeology Studies and Mitigation	\$40,000
Land Acquisition and Surveying (2 acres)	\$16,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$28,000</u>
TOTAL COST OF PROJECT	\$821,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$69,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$5,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (17529 kW-hr @ 0.09 \$/kW-hr)	\$2,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$76,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	55
Annual Cost of Water (\$ per acft)	\$1,382
Annual Cost of Water (\$ per 1,000 gallons)	\$4.24
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Johnson City - Blanco - Ellenburger-San Saba - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$947,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$947,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$331,000
Environmental & Archaeology Studies and Mitigation	\$136,000
Land Acquisition and Surveying (3 acres)	\$40,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$51,000</u>
TOTAL COST OF PROJECT	\$1,505,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$126,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$9,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$ 0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (53660 kW-hr @ 0.09 \$/kW-hr)	\$5,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$140,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	175
Annual Cost of Water (\$ per acft)	\$800
Annual Cost of Water (\$ per 1,000 gallons)	\$2.45
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

BERTRAM - Burnet - Ellenburger-San Saba - Expansion of Groundwater Supply

ltem	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,369,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,369,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$479,000
Environmental & Archaeology Studies and Mitigation	\$100,000
Land Acquisition and Surveying (3 acres)	\$14,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$69,000</u>
TOTAL COST OF PROJECT	\$2,031,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$170,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$14,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (41721 kW-hr @ 0.09 \$/kW-hr)	\$4,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$188,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	180
Annual Cost of Water (\$ per acft)	\$1,044
Annual Cost of Water (\$ per 1,000 gallons)	\$3.20
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

MINING 3 - Burnet - Ellenburger-San Saba - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$9,048,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$9,048,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$3,167,000
Environmental & Archaeology Studies and Mitigation	\$658,000
Land Acquisition and Surveying (16 acres)	\$91,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$454,000</u>
TOTAL COST OF PROJECT	\$13,418,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$1,123,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$90,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (610804 kW-hr @ 0.09 \$/kW-hr)	\$55,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$1,268,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,500
Annual Cost of Water (\$ per acft)	\$845
Annual Cost of Water (\$ per 1,000 gallons)	\$2.59
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

MANUFACTURING 3 - Gillespie - Ellenburger-San Saba - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$2,535,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$2,535,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$887,000
Environmental & Archaeology Studies and Mitigation	\$286,000
Land Acquisition and Surveying (7 acres)	\$40,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$132,000</u>
TOTAL COST OF PROJECT	\$3,880,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$325,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$25,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (244002 kW-hr @ 0.09 \$/kW-hr)	\$22,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$372,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	626
Annual Cost of Water (\$ per acft)	\$594
Annual Cost of Water (\$ per 1,000 gallons)	\$1.82
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices Pflugerville - Travis - Edwards (BFZ) Aquifer - Expansion of Groundwater Supply	
Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518	
ltem	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$2,564,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$2,564,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	¢007 7099
Environmental & Archaeology Studies and Mitigation	\$097,000 \$120,000
Land Acquisition and Surveying (2 acres)	φ120,000 ¢21,000
Land Acquisition and Surveying (3 acres)	\$21,000 \$127,000
TOTAL COST OF PROJECT	<u>\$127,000</u>
TOTAL COST OF PROJECT	\$3,729,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$312,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$26,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (361826 kW-hr @ 0.09 \$/kW-hr)	\$33,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$371,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,000
Annual Cost of Water (\$ per acft)	\$371
Annual Cost of Water (\$ per 1,000 gallons)	\$1.14
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

COUNTY-OTHER 4 - Colorado - Gulf Coast - Expansion of Groundwater Supply

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,022,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,022,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$358,000
Environmental & Archaeology Studies and Mitigation	\$30,000
Land Acquisition and Surveying (1 acres)	\$6,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$50,000</u>
TOTAL COST OF PROJECT	\$1,466,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$123,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$10,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (36111 kW-hr @ 0.09 \$/kW-hr)	\$3,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$136,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	226
Annual Cost of Water (\$ per acft)	\$602
Annual Cost of Water (\$ per 1,000 gallons)	\$1.85
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015
Cost Estimate Summary Water Supply Project Option 41518 Prices	
---	-----------------------------------
COUNTY-OTHER 5 - Fayette - Gulf Coast - Expansion of Groundwater Supply	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
ltem	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,581,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,581,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	* ==0.000
Environmental & Analysis allow Otentian and Mitigation	\$553,000
Environmental & Archaeology Studies and Mitigation	\$58,000
Land Acquisition and Surveying (2 acres)	\$9,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$78,000</u>
TOTAL COST OF PROJECT	\$2,279,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$191,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$16,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (72493 kW-hr @ 0.09 \$/kW-hr)	\$7,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>

TOTAL ANNUAL COST

Available Project Yield (acft/yr), based on a Peaking Factor of 2345Annual Cost of Water (\$ per acft)\$620Annual Cost of Water (\$ per 1,000 gallons)\$1.90Note: One or more cost element has been calculated externally4/24/2015

\$214,000

Cost Estimate Summary	
Cost Estimate Summary Water Supply Project Option	
Maler Supply Project Option 41518 Prices	
MINING 4 - Favette - Gulf Coast - Expansion of Groundwate	er Supply
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$3,651,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$3,651,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,278,000
Environmental & Archaeology Studies and Mitigation	\$116,000
Land Acquisition and Surveying (4 acres)	\$18,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$178,000</u>
TOTAL COST OF PROJECT	\$5,241,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$439,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$37,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (618117 kW-hr @ 0.09 \$/kW-hr)	\$56.000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$532.000
	···· /···
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,576
Annual Cost of Water (\$ per acft)	\$338
Annual Cost of Water (\$ per 1,000 gallons)	\$1.04
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices	
COUNTY-OTHER 6 - Fayette - Gulf Coast - Expansion of Ground	lwater Supply
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,581,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,581,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	* === 000
and Contingencies (30% for pipes & 35% for all other facilities)	\$553,000
Environmental & Archaeology Studies and Mitigation	\$58,000
Land Acquisition and Surveying (2 acres)	\$9,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$78,000</u>
TOTAL COST OF PROJECT	\$2,279,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$191,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$16,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (61767 kW-hr @ 0.09 \$/kW-hr)	\$6,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>

TOTAL ANNUAL COST

Available Project Yield (acft/yr), based on a Peaking Factor of 2294Annual Cost of Water (\$ per acft)\$724Annual Cost of Water (\$ per 1,000 gallons)\$2.22Note: One or more cost element has been calculated externally4/24/2015

\$213,000

Cost Estimate Summary Water Supply Project Option 41518 Prices	
Cost based on ENR CCI 9552 for 41518 and	iuwater
a PPI of 187 for 41518	
	Estimated Costs
	for Facilities
CAPITAL COST	\$0
Off-Channel Storage/Ring Dike (Conservation Pool, acits)	ψ0 \$0
Terminal Storage (Conservation Pool, acft, acres)	\$0 \$0
Intake Pump Stations (0.2 MGD)	¢≎ \$0
Transmission Pipeline (6 in dia 5 miles)	\$480.000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1.022.000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,502,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$502,000
Environmental & Archaeology Studies and Mitigation	\$155,000
Land Acquisition and Surveying (6 acres)	\$6,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$76,000</u>
TOTAL COST OF PROJECT	\$2,241,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$188,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (31311 kW-hr @ 0.09 \$/kW-hr)	\$3,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$206,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	100
Annual Cost of Water (\$ per acft)	\$2,060
Annual Cost of Water (\$ per 1,000 gallons)	\$6.32
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices

MANUFACTURING 2 - Fayette - Gulf Coast - Expansion of Groundwater Supply

Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,581,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,581,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$553,000
Environmental & Archaeology Studies and Mitigation	\$58,000
Land Acquisition and Surveying (2 acres)	\$9,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$78,000</u>
TOTAL COST OF PROJECT	\$2,279,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$191,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$16,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (82170 kW-hr @ 0.09 \$/kW-hr)	\$7,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$214,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	391
Annual Cost of Water (\$ per acft)	\$547
Annual Cost of Water (\$ per 1,000 gallons)	\$1.68
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary	
Water Supply Project Option	
41516 Prices MINING 5 Equates Cult Coast Expansion of Groundwate	or Supply
Minning 5 - Fayelle - Guil Coast - Expansion of Groundwale	i Supply
Cost based on ENR CCI 9552 for 41518 and	
	Estimated Casta
ltem	for Facilities
Dam and Reservoir (Conservation Pool, acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool, acft, acres)	\$0 \$0
Terminal Storage (Conservation Pool act, acres)	\$° \$0
Intake Pump Stations (0 MGD)	\$° \$0
Transmission Pineline (0 in dia 0 miles)	\$0 \$0
Transmission Pump Station(s) & Storage Tank(s)	\$0 \$0
Well Fields (Wells, Pumps, and Pining)	Ψ ⁰ \$1 581 000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0 \$0
Integration Relocations & Other	ψ0 \$0
	¢0 \$1 581 000
	ψ1,301,000
Engineering and Eessibility Studies Legal Assistance Einancing Bond Counsel	
and Contingencies (30% for pipes & 35% for all other facilities)	\$553.000
Environmental & Archaeology Studies and Mitigation	\$58,000
Land Acquisition and Surveying (2 acres)	\$9,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$78,000
	\$2.279.000
	<i> </i>
ANNUAL COST	
Debt Service (5.5 percent 20 years)	\$191.000
Reservoir Debt Service (5.5 percent 40 years)	\$0
Operation and Maintenance	ΨŬ
Intake Pineline Pump Station (1% of Cost of Facilities)	\$16,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0 \$0
Pumping Energy Costs (72282 kW-br $@$ 0.09 \$/kW-br)	ΨU \$7.000
Purchase of Water (active $@$ \$/active $@$ (active $@$)	φ1,000 Φ0
	<u>⊉0</u> \$214 000
	ΦΖ14,000
Available Project Yield (acft/yr). based on a Peaking Factor of 2	344
Annual Cost of Water (\$ per acft)	\$622
Annual Cost of Water (\$ per 1,000 gallons)	\$1.91
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices COUNTY-OTHER 3 - Blanco - Hickory - Expansion of Groundwater Supply Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518 Estimated Costs Item for Facilities

Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$912,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$912,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$319,000
Environmental & Archaeology Studies and Mitigation	\$32,000
Land Acquisition and Surveying (1 acres)	\$8,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$45,000</u>
TOTAL COST OF PROJECT	\$1,316,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$110,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$9,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (11843 kW-hr @ 0.09 \$/kW-hr)	\$1,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$120,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	55
Annual Cost of Water (\$ per acft)	\$2,182
Annual Cost of Water (\$ per 1,000 gallons)	\$6.69
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices	
MINING 6 - Burnet - Hickory Aquifer - Expansion of Groundwa Cost based on ENR CCI 9552 for 41518 and	ater Supply
a PPI of 187 for 41518	
ltom	Estimated Costs for Facilities
	ion ruonnies
Dam and Reservoir (Conservation Pool, acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft acres)	¢≎ \$0
Terminal Storage (Conservation Pool actt acres)	¢° \$0
Intake Pump Stations (0 MGD)	¢° \$0
Transmission Pipeline (0 in dia 0 miles)	\$0 \$0
Transmission Pump Station(s) & Storage Tank(s)	\$0 \$0
Well Fields (Wells, Pumps, and Piping)	\$9.281.000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0 \$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$9,281,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$3,248,000
Environmental & Archaeology Studies and Mitigation	\$399,000
Land Acquisition and Surveying (10 acres)	\$54,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$455,000</u>
TOTAL COST OF PROJECT	\$13,437,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$1,124,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$93,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (845796 kW-hr @ 0.09 \$/kW-hr)	\$76,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$1,293,000
Available Project Yield (acft/vr), based on a Peaking Factor of 2	1.800
Annual Cost of Water (\$ per acft)	\$718
Annual Cost of Water (\$ per 1,000 gallons)	\$2.20
Note: One or more cost element has been calculated externally	÷ -•

Jeff Dahm

4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices

MINING 7 - Burnet - Marble Falls Aquifer - Expansion of Groundwater Supply

Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$4,956,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$4,956,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,734,000
Environmental & Archaeology Studies and Mitigation	\$284,000
Land Acquisition and Surveying (7 acres)	\$37,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$246,000</u>
TOTAL COST OF PROJECT	\$7,257,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$607,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$50,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (512039 kW-hr @ 0.09 \$/kW-hr)	\$46,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$703,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,500
Annual Cost of Water (\$ per acft)	\$469
Annual Cost of Water (\$ per 1,000 gallons)	\$1.44
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices

MINING 8 - Fayette - Sparta Aquifer - Expansion of Groundwater Supply

Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518

Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$512,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$512,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$179,000
Environmental & Archaeology Studies and Mitigation	\$30,000
Land Acquisition and Surveying (1 acres)	\$6,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$26,000</u>
TOTAL COST OF PROJECT	\$753,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$63,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$5,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (3301 kW-hr @ 0.09 \$/kW-hr)	\$0
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$68,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	66
Annual Cost of Water (\$ per acft)	\$1,030
Annual Cost of Water (\$ per 1,000 gallons)	\$3.16
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option	
41518 Prices	A
MINING 9 - Hays - Trinity Aquifer - Expansion of Groundwat	er Supply
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$3,265,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$3,265,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,143,000
Environmental & Archaeology Studies and Mitigation	\$54,000
Land Acquisition and Surveying (6 acres)	\$32,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$158,000</u>
TOTAL COST OF PROJECT	\$4,652,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$389,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$33,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (383481 kW-hr @ 0.09 \$/kW-hr)	\$35,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$457,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,047
Annual Cost of Water (\$ per acft)	\$436
Annual Cost of Water (\$ per 1,000 gallons)	\$1.34
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary	
Cost Estimate Summary Water Supply Project Option	
νιαιεί δυμριγ Γισμου Ομιστι 41518 Prices	
Irrigation - Mills - Trinity - Expansion of Groundwater S	unnlv
Cost based on FNR CCI 9552 for 41518 and	, where the second s
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$5,426,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$5,426,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,899,000
Environmental & Archaeology Studies and Mitigation	\$574,000
Land Acquisition and Surveying (13 acres)	\$109,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$281,000</u>
TOTAL COST OF PROJECT	\$8,289,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$694,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$54,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (326338 kW-hr @ 0.09 \$/kW-hr)	\$29,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$777,000
	. ,
Available Project Yield (acft/yr), based on a Peaking Factor of 2	480
Annual Cost of Water (\$ per acft)	\$1,619
Annual Cost of Water (\$ per 1,000 gallons)	\$4.97
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
Lakeway - Travis - Trinity - Expansion of Groundwater S	upply
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
tom	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$2,016,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$2,016,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$706,000
Environmental & Archaeology Studies and Mitigation	\$136,000
Land Acquisition and Surveying (3 acres)	\$26,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$101,000</u>
TOTAL COST OF PROJECT	\$2,985,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$250,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$20,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (163990 kW-hr @ 0.09 \$/kW-hr)	\$15,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$285,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	500
Annual Cost of Water (\$ per acft)	\$570
Annual Cost of Water (\$ per 1,000 gallons)	\$1.75
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option	
ννατεί δυρριγ πισμέτι Ορτιοπ Λ1518 Prices	
Manor - Travis - Trinity - Expansion of Groundwater Su	innlv
Cost based on ENR CCI 9552 for 41518 and	<i>ipp:y</i>
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$2,328,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$2,328,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$815,000
Environmental & Archaeology Studies and Mitigation	\$152,000
Land Acquisition and Surveying (4 acres)	\$30,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$117,000</u>
TOTAL COST OF PROJECT	\$3,442,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$288,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$23,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumpina Energy Costs (178861 kW-hr @ 0.09 \$/kW-hr)	\$16,000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$327,000
	····
Available Project Yield (acft/vr), based on a Peaking Factor of 2	600
Annual Cost of Water (\$ per acft)	\$545
Annual Cost of Water (\$ per 1,000 gallons)	\$1.67
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option	
Water Supply Project Option 11518 Prices	
Manville WSC - Travis - Trinity - Expansion of Groundwate	r Sunnly
Cost based on END CCI 0552 for 41518 and	ТЗарріу
a PPI of 187 for 41518	
	Estimated Costs
ltem	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0
Transmission Pipeline (0 in dia., 0 miles)	\$0
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells. Pumps. and Piping)	\$3.672,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$3,672,000
	+-,- ,
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,285,000
Environmental & Archaeology Studies and Mitigation	\$243,000
Land Acquisition and Surveying (6 acres)	\$47,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$184,000</u>
TOTAL COST OF PROJECT	\$5,431,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$455,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	•
Intake. Pipeline. Pump Station (1% of Cost of Facilities)	\$37,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (497139 kW-hr @ 0.09 \$/kW-hr)	\$45.000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$537.0 <u>00</u>
	+ , - · · ·
Available Proiect Yield (acft/vr), based on a Peaking Factor of 2	1,000
Annual Cost of Water (\$ per acft)	\$537
Annual Cost of Water (\$ per 1,000 gallons)	\$1.65
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015
Purchase of Water (acft/yr @ \$/acft) FOTAL ANNUAL COST Available Project Yield (acft/yr), based on a Peaking Factor of 2 Annual Cost of Water (\$ per acft) Annual Cost of Water (\$ per 1,000 gallons)	<u>\$0</u> \$537,000 1,000 \$537 \$1.65
	4/24/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
Bastrop - Carrizo-Wilcox - Development of New Ground	water
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	tor Facilities
CAPITAL COST	••
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.5 MGD)	\$0
Transmission Pipeline (6 in dia., 5 miles)	\$518,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,514,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$2,032,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$685,000
Environmental & Archaeology Studies and Mitigation	\$154,000
Land Acquisition and Surveying (6 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$101,000</u>
TOTAL COST OF PROJECT	\$2,976,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$249,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$20,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (134022 kW-hr @ 0.09 \$/kW-hr)	\$12,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$281,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	300
Annual Cost of Water (\$ per acft)	\$937
Annual Cost of Water (\$ per 1,000 gallons)	\$2.87
	1/20/2045
Jeff Danm	1/29/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices Mining 1 - Bastrop - Carrizo-Wilcox - Development of New Groundwater	
Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
	* 0
Dam and Reservoir (Conservation Pool actt, acres)	\$U \$0
Off-Channel Storage/Ring Dike (Conservation Pool actt, acres)	\$U \$0
lerminal Storage (Conservation Pool actt, acres)	\$U \$0
Intake Pump Stations (0.8 MGD)	\$U \$000.000
Transmission Pipeline (10 in dia., 5 miles)	\$826,000
Transmission Pump Station(s) & Storage Tank(s)	\$U
Vell Fields (Wells, Pumps, and Piping)	\$1,514,000
Storage Tanks (Other Than at Booster Pump Stations)	\$U \$0
Water Treatment Plant (UMGD)	\$U \$0
	0⊄ 000 016 C⊅
TOTAL COST OF FACILITIES	\$2,340,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel	
and Contingencies (30% for pipes & 35% for all other facilities)	\$778,000
Environmental & Archaeology Studies and Mitigation	\$154,000
Land Acquisition and Surveying (6 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$115,000
TOTAL COST OF PROJECT	\$3,391,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$284,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$23,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (154421 kW-hr @ 0.09 \$/kW-hr)	\$14,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$321,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	466
Annual Cost of Water (\$ per acft)	\$689
Annual Cost of Water (\$ per 1,000 gallons)	\$2.11
leff De han	
Jett Dahm	4/24/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices Steam-Electric - Wharton - Gulf Coast - Development of New Groundwater	
Cost based on ENR CCI 9552 for 41518 and a PPI of 187 for 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.4 MGD)	\$0
Transmission Pipeline (6 in dia., 5 miles)	\$480,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,022,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,502,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$502.000
Environmental & Archaeology Studies and Mitigation	\$153.000
Land Acquisition and Surveying (6 acres)	\$4.000
Interest During Construction (4% for 1 years with a 1% ROI)	\$76,000
TOTAL COST OF PROJECT	\$2,237,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$187,000
Reservoir Debt Service (5.5 percent, 40 vears)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (55855 kW-hr @ 0.09 \$/kW-hr)	\$5,000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$207,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	200
Annual Cost of Water (\$ per acft)	\$1,035
Annual Cost of Water (\$ per 1,000 gallons)	\$3.18
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	nnly
Cost based on ENP CCI 0552 for 41518 and	рріу
a PPI of 187 for 41518	
Estimated Costs	
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.4 MGD)	\$0
Transmission Pipeline (6 in dia., 5 miles)	\$480,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,368,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,848,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$623,000
Environmental & Archaeology Studies and Mitigation	\$170,000
Land Acquisition and Surveying (7 acres)	\$9,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$93,000</u>
TOTAL COST OF PROJECT	\$2,743,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$229,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$18,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (82853 kW-hr @ 0.09 \$/kW-hr)	\$7,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$254,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	200
Annual Cost of Water (\$ per acft)	\$1,270
Annual Cost of Water (\$ per 1,000 gallons)	\$3.90
Note: One or more cost element has been calculated externally	
Jeff Dahm	2/20/2015

Cost Fotimete Summers	
Cost Estimate Summary Water Supply Project Option	
41518 Prices	
Mining 2 - Bastrop - Queen City - Development of New Groundwater	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.5 MGD)	\$0
Transmission Pipeline (6 in dia., 5 miles)	\$557,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,097,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,654,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$551,000
Environmental & Archaeology Studies and Mitigation	\$154,000
Land Acquisition and Surveying (6 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$83,000</u>
TOTAL COST OF PROJECT	\$2,446,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$205,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$17,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (102238 kW-hr @ 0.09 \$/kW-hr)	\$9,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$231,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	306
Annual Cost of Water (\$ per acft)	\$755
Annual Cost of Water (\$ per 1,000 gallons)	\$2.32
Jeff Dahm	4/24/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
Smithville - Queen City - Development of New Grounaw	vater
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	IOF Facilities
	¢o
Dam and Reservoir (Conservation Pool acit, acres)	\$U \$0
Off-Channel Storage/Ring Dike (Conservation Pool actt, acres)	\$U
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.3 MGD)	\$0
Transmission Pipeline (6 in dia., 5 miles)	\$480,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$1,296,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,776,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$597,000
Environmental & Archaeology Studies and Mitigation	\$154,000
Land Acquisition and Surveying (6 acres)	\$4,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$89,000</u>
TOTAL COST OF PROJECT	\$2,620,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$219,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$18,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumpina Enerav Costs (47682 kW-hr @ 0.09 \$/kW-hr)	\$4,000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$241.0 <u>00</u>
	∀ ,
Available Project Yield (acft/yr), based on a Peaking Factor of 2	150
Annual Cost of Water (\$ per acft)	\$1,607
Annual Cost of Water (\$ per 1,000 gallons)	\$4.93
Jeff Dahm	1/29/2015

Cost Estimate Summary	
Water Supply Project Option	
41310 FILLES Sunsat Vallay - Travis - Trinity - Development of New Grou	ndwatar
Sunset valley - mavis - minity - Development of New Grou	ที่มีพลเษา
COST DASED OIL EINK CCI 9332 101 41310 ANU > DDI of 187 for 11518	
	Estimated Costs
ltem	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.2 MGD)	\$0
Transmission Pipeline (6 in dia., 5 miles)	\$480,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$984,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$1,464,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$488,000
Environmental & Archaeology Studies and Mitigation	\$187,000
Land Acquisition and Surveying (7 acres)	\$13,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$76,000
TOTAL COST OF PROJECT	\$2,228,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$186,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$15,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (71816 kW-hr @ 0.09 \$/kW-hr)	\$6,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$207,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	200
Annual Cost of Water (\$ per acft)	\$1,035
Annual Cost of Water (\$ per 1,000 gallons)	\$3.18
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/24/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
BSEACD - Edwards-Middle Trinity ASR	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	tor Facilities
CAPITAL COST	¢o
Off Channel Storage/Ping Dike (Concervation Real, actes)	\$0 \$0
Cin-Channel Storage/Ring Dike (Conservation Pool acit, acres)	\$U \$0
Letele Due Stations (0 MOD)	\$U \$1 070 000
Intake Pump Stations (0 MGD)	\$1,878,000
Transmission Pipeline (0 in dia., 1 miles)	\$309,000
Transmission Pump Station(s) & Storage Tank(s)	\$1,603,000
Well Fields (Wells, Pumps, and Piping)	\$5,301,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Two Water Treatment Plants (1 MGD and 1 MGD)	\$140,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$9,231,000
Engineering and Feasibility Studies Legal Assistance Financing Bond Counsel	
and Contingencies (30% for pipes & 35% for all other facilities)	\$3,215,000
Environmental & Archaeology Studies and Mitigation	\$59,000
Land Acquisition and Surveying (12 acres)	\$37,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$439,000
TOTAL COST OF PROJECT	\$12,981,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$1,086,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$139,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$84,000
Pumping Energy Costs (958233 kW-hr @ 0.09 \$/kW-hr)	\$86,000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$1,395,0 <mark>00</mark>
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,144
Annual Cost of Water (\$ per acft)	\$1,219
Annual Cost of Water (\$ per 1,000 gallons)	\$3.74
NDH	4/17/2015

Coot Fotimete Summer	
Cost Estimate Summary Water Supply Project Option	
Maler Suppry Project Option 11518 Prices	
BSEACD - Saline Edwards ASR	
Cost based on ENP CCI 0552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$1,533,000
Transmission Pipeline (0 in dia., 6 miles)	\$1,855,000
Transmission Pump Station(s) & Storage Tank(s)	\$1,077,000
Well Fields (Wells, Pumps, and Piping)	\$2,844,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Two Water Treatment Plants (0.3 MGD and 0.9 MGD)	\$3,357,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$10,666,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	* 0.040.000
and Contingencies (30% for pipes & 35% for all other facilities)	\$3,640,000
Environmental & Archaeology Studies and Mitigation	\$182,000
Land Acquisition and Surveying (12 acres)	\$35,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$509,000</u>
TOTAL COST OF PROJECT	\$15,032,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$1,258,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$109,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$622.000
Pumping Energy Costs (464130 kW-hr @ 0.09 \$/kW-hr)	\$42.000
Purchase of Water (acft/vr @ \$/acft)	¢,000 \$0
TOTAL ANNUAL COST	\$2.031.000
	<i> </i>
Available Project Yield (acft/yr), based on a Peaking Factor of 2	1,000
Annual Cost of Water (\$ per acft)	\$2,031
Annual Cost of Water (\$ per 1,000 gallons)	\$6.23
NDH	4/17/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices	
Burnet County-Other, City of Burnet, City of Bertram - Buena V	lista Project
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (8.7 MGD)	\$980,000
Transmission Pipeline (18 in dia., 12 miles)	\$249,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (8.7 MGD)	\$16,323,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$17,552,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	\$6,131,000
Environmental & Archaeology Studies and Mitigation	\$379.000
Land Acquisition and Surveying (14 acres)	\$82.000
Interest During Construction (4% for 1 years with a 1% ROI)	\$846.000
TOTAL COST OF PROJECT	\$24,990,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$2.091.000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	t -
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$27.000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$1.660.000
Pumping Energy Costs (1463225 kW-hr @ 0.09 \$/kW-hr)	\$132.000
Purchase of Water (4884 acft/vr @ 151 \$/acft)	\$737.000
TOTAL ANNUAL COST	\$4,647,000
	÷ -, ,- ,- ,- ,- ,- ,- ,- ,- ,- ,- ,-
Available Project Yield (acft/yr), based on a Peaking Factor of 2	4,884
Annual Cost of Water (\$ per acft)	\$951
Annual Cost of Water (\$ per 1,000 gallons)	\$2.92
Note: One or more cost element has been calculated externally	
Jeff Dahm	4/17/2015

Cost Estimate Summary	
Water Supply Project Option 41518 Prices	
41310111003 Rurnet County-Other - Fast Lake Ruchanan Projec	4
Cost based on END CCI 0552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (1.7 MGD)	\$334,000
Transmission Pipeline (10 in dia., 12 miles)	\$535,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (1.7 MGD)	\$6.235,000
Integration. Relocations. & Other	\$0
TOTAL COST OF FACILITIES	\$7.104,000
	+- ;;
Engineering and Feasibility Studies. Legal Assistance, Financing, Bond Counsel.	
and Contingencies (30% for pipes & 35% for all other facilities)	\$2,460,000
Environmental & Archaeology Studies and Mitigation	\$361,000
Land Acquisition and Surveying (11 acres)	\$62,000
Interest During Construction (4% for 1 years with a 1% ROI)	\$350,000
TOTAL COST OF PROJECT	\$10,337,000
	• • • •
ANNUAL COST	
Debt Service (5.5 percent 20 years)	\$865,000
Reservoir Debt Service (5.5 percent 40 years)	\$0
Operation and Maintenance	Ψ~
Intoka Dinalina Dump Station (1% of Cost of Facilities)	\$14,000
Dom and Reservoir (1.5% of Cost of Facilities)	φ1 7 ,000 \$0
Water Treatment Plant (2.5% of Cost of Facilities)	پ₀ ۹۵۵ ۵۵۵
Water Treatment Fiant (2.5% of Cost of Facilities) Dumping Energy Costs (422057 kW/br $@$ 0.09 \$/kW/br)	\$30 000 \$30 000
Pumping Energy Cosis (432037 KW-III @ 0.03 (KW-III)	φ39,000 ¢1/1 000
	\$141,000 \$1 753 000
TOTAL ANNUAL COST	φι,/33,000
Available Project Yield (acft/vr), based on a Peaking Factor of 2	935
Annual Cost of Water (\$ per acft)	\$1.875
Annual Cost of Water (\$ per 1.000 gallons)	\$5.75
Note: One or more cost element has been calculated externally	÷ • • • •
Jeff Dahm	4/17/2015

Oract Fatimate Summary	
Cost Estimate Summary Water Supply Project Option	
νιαιει συρριγ Γισμου Δ1518 Prices	
County Other - Burnet - Marble Falls RWS	
Cost based on FNR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (6.5 MGD)	\$1,992,000
Transmission Pipeline (18 in dia., 19 miles)	\$1,638,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (10 MGD)	\$30,738,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$34,368,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$11,947,000
Environmental & Archaeology Studies and Mitigation	\$557,000
Land Acquisition and Surveying (15 acres)	\$85,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,644,000</u>
TOTAL COST OF PROJECT	\$48,601,000
	• · · · · · · · · · · · · · · · · · · ·
Debt Service (5.5 percent, 20 years)	\$4,067,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$66,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$3,286,000
Pumping Energy Costs (2258294 kW-hr @ 0.09 \$/kW-hr)	\$203,000
Purchase of Water (5878 acft/yr @ 151 \$/acft)	<u>\$888,000</u>
TOTAL ANNUAL COST	\$8,510,000
Available Project Yield (acft/yr) based on a Peaking Factor of 2	5 578
Annual Cost of Water (\$ per acft)	\$1,526
Annual Cost of Water (\$ per 1,000 gallons)	\$4.68
Note: One or more cost element has been calculated externally	¢
Jeff Dahm	4/17/2015

Cost Estimate Summary	
Cost Estimate Summary Water Supply Project Option	
Volente - Volente Water Contract with I CRA	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0.3 MGD)	\$772,000
Transmission Pipeline (12 in dia., 5 miles)	\$1,235,000
Transmission Pump Station(s) & Storage Tank(s)	\$889,000
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0.5 MGD)	\$2,916,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$5,812,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,973,000
Environmental & Archaeology Studies and Mitigation	\$141,000
Land Acquisition and Surveying (17 acres)	\$57,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$280,000</u>
TOTAL COST OF PROJECT	\$8,263,000
ANNUAL COST	
Debt Service (5.5 percent 20 years)	\$601.000
Beconvoir Debt Service (5.5 percent, 20 years)	۵0,1600 ۵۵
Operation and Maintenance	φΟ
Intella Dipolino Dump Station (19) of Cost of Epoilition	¢51.000
Dem and Baseryeir (1.5% of Cost of Facilities)	φ01,000 Φ0
Mater Treatment Plant (2.5% of Cost of Facilities)	ېر ۵۵۵ دمونې
Water Treatment Plant (2.5% of Cost of Facilities)	\$292,000 ¢0,000
Pumping Energy Costs (94767 kw-nr @ 0.09 \$/kw-nr)	\$9,000
Purchase of Water (142 acti/yr @ 151 \$/acti)	<u>\$21,000</u>
TOTAL ANNUAL COST	\$1,064,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2.5	142
Annual Cost of Water (\$ per acft)	\$7,493
Annual Cost of Water (\$ per 1,000 gallons)	\$22.99
CW	1/12/2015

Cost Estimato Summary	
Cost Estimate Summary Water Supply Project Option	
Mater Supply Project Option 41518 Prices	
City of Bastron - Water Supply for Bastron County	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (5.6 MGD)	\$2,358,000
Transmission Pipeline (20 in dia., 2 miles)	\$1,444,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (6.2 MGD)	\$21,101,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$24,903,000
Engineering and English Otodian Long Mariatanan Eingering Dand Oromaal	
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel, and Contingencies (30% for pipes & 35% for all other facilities)	¢9 644 000
Environmental & Archaeology Studies and Mitigation	\$0,044,000 \$74,000
Land Acquisition and Surveying (18 acros)	\$74,000 \$58,000
Interest During Construction (4% for 1 years with a 1% POI)	φ50,000 ¢1 170,000
	<u>\$1,179,000</u> \$24,858,000
	\$34,030,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$2,917,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$73,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$2,110,000
Pumping Energy Costs (531589 kW-hr @ 0.09 \$/kW-hr)	\$48,000
Purchase of Water (2500 acft/yr @ 151 \$/acft)	\$378,000
TOTAL ANNUAL COST	\$5,526,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2.8	2,500
Annual Cost of Water (\$ per acft)	\$2,210
Annual Cost of Water (\$ per 1,000 gallons)	\$6.78
CW/	4/40/20145
	1/12/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
City of Elgin - Water Supply for Bastrop County	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (8.7 MGD)	\$4,105,000
Transmission Pipeline (24 in dia., 13 miles)	\$7,779,000
Transmission Pump Station(s) & Storage Tank(s)	\$3,155,000
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (8.7 MGD)	\$28,916,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$43,955,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$14,995,000
Environmental & Archaeology Studies and Mitigation	\$353,000
Land Acquisition and Surveying (72 acres)	\$236,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$2,084,000</u>
TOTAL COST OF PROJECT	\$61,623,000
Debt Service (5.5 percent 20 years)	¢5 157 000
Beagryair Debt Service (5.5 percent, 20 years)	φ0,107,000 Φ0
Operation and Maintananaa	φυ
Uperation and Maintenance	¢250.000
Dese and Decembrin (4, 5%, of Ocot of Facilities)	\$250,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$U
Water Treatment Plant (2.5% of Cost of Facilities)	\$2,892,000
Pumping Energy Costs (1760330 kW-nr @ 0.09 \$/kW-nr)	\$158,000
Purchase of Water (3500 acft/yr @ 151 \$/acft)	<u>\$529,000</u>
IOTAL ANNUAL COST	\$8,986,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2.8	3,500
Annual Cost of Water (\$ per acft)	\$2,567
Annual Cost of Water (\$ per 1,000 gallons)	\$7.88
CW	1/9/2015

Cost Estimate Summary	
COST ESTIMate Summary Water Supply Project Option	
Mater Supply Project Option 1518 Prices	
Aqua WSC - Water Supply for Bastrop County	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (18.7 MGD)	\$18,339,000
Transmission Pipeline (36 in dia., 25 miles)	\$27,824,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Two Water Treatment Plants (6.7 MGD and 6.7 MGD)	\$45,328,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$91,491,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$30,630,000
Environmental & Archaeology Studies and Mitigation	\$665,000
Land Acquisition and Surveying (138 acres)	\$439,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$4,313,000</u>
TOTAL COST OF PROJECT	\$127,538,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$10,672,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$737,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$4,533,000
Pumping Energy Costs (8140246 kW-hr @ 0.09 \$/kW-hr)	\$733,000
Purchase of Water (15000 acft/yr @ 151 \$/acft)	\$2,265,000
TOTAL ANNUAL COST	\$18,940,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2.8	15,000
Annual Cost of Water (\$ per acft)	\$1,263
Annual Cost of Water (\$ per 1,000 gallons)	\$3.87
CW	1/9/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
Region K - Bastrop Water Reuse	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
ltem	Estimated Costs for Facilities
CAPITAL COST	-
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$1,083,000
Transmission Pipeline (0 in dia., 5 miles)	\$1,175,000
Transmission Pump Station(s) & Storage Tank(s)	\$997,000
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$3,255,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,080,000
Environmental & Archaeology Studies and Mitigation	\$125,000
Land Acquisition and Surveying (7 acres)	\$8,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$157,000</u>
TOTAL COST OF PROJECT	\$4,625,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$387,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$61,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (596317 kW-hr @ 0.09 \$/kW-hr)	\$54,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$502,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	1,120
Annual Cost of Water (\$ per acft)	\$448
Annual Cost of Water (\$ per 1,000 gallons)	\$1.38
P. Varanah	3/9/2015
D. regarien	5/3/2010

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
Buda - Water Reuse	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 tor 41518	
Item	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$800,000
Transmission Pipeline (0 in dia., 4 miles)	\$3,598,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$4,398,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,359,000
Environmental & Archaeology Studies and Mitigation	\$105,000
Land Acquisition and Surveying (7 acres)	\$7,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$206,000</u>
TOTAL COST OF PROJECT	\$6,075,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$508,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$56,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (310484 kW-hr @ 0.09 \$/kW-hr)	\$28,000
Purchase of Water (acft/yr @ \$/acft)	<u>\$0</u>
TOTAL ANNUAL COST	\$592,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	2,240
Annual Cost of Water (\$ per acft)	\$264
Annual Cost of Water (\$ per 1,000 gallons)	\$0.81
1 Delecim	2/0/2015
J. Baicoim	3/9/2010

Cost Estimate Summary	
Water Supply Project Option	
410 10 Frices	
) M
Cost based on ENR CCI 9552 for 41518 and	
a PPI 01 187 101 41316	
ltem	Estimated Costs for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft. acres)	\$0
Terminal Storage (Conservation Pool acft. acres)	\$0
Intake Pump Stations (0 MGD)	\$100.000
Transmission Pineline (6 in dia 2 miles)	\$306.000
Transmission Pump Station(s) & Storage Tank(s)	\$325,000
Wall Fields (Walle Pumps and Pining)	¢020,000 \$0
Storago Tanke (Other Than at Robeter Plumn Stations)	\$0 \$0
Water Treatment Plant (0 MCD)	Ψ ^U \$0
Integration Polocations & Other	Ψ ^υ \$122.000
	¢122,000
TOTAL COST OF FACILITIES	Φ 000,000
Engineering and Ecosibility Studies, Logal Assistance, Einancing, Rond Counsel	
and Contingencies (30% for pipes & 35% for all other facilities)	\$283,000
Environmental & Archaeology Studies and Mitigation	\$48,000
Land Acquisition and Surveying (0 acres)	φ-τ0,000 \$0
Interest During Construction 4% for 1 years with a 1% ROI)	\$42 000
TOTAL COST OF DDO IECT	<u>↓+2,000</u> \$1 226 000
	ΨI,220,000
ANNUAL COST	
Debt Service (5.5 percent. 20 vears)	\$103.000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	¥ -
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$7.000
Dam and Reservoir (1% of Cost of Facilities)	\$0
Water Treatment Plant (1% of Cost of Facilities)	\$0
Pumping Energy Costs ($0 \text{ kW-hr} @ 0.09 \text{ s/kW-hr}$)	\$0
Purchase of Water (acft/vr @ \$/acft)	\$0 \$0
	<u>*~</u> \$110 000
	ψ110,000
Available Project Yield (acft/yr), based on a Peaking Factor of	134
Annual Cost of Water (\$ per acft)	\$821
Annual Cost of Water (\$ per 1,000 gallons)	\$2.52
Note: One or more cost element has been calculated externally	
Joan Portillo	2/9/2015

Oract Fatimata Summary	
Cost Estimate Summary Water Supply Project Option	
41518 Prices	
Region K - City of Llano Reuse	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$153,000
Transmission Pipeline (0 in dia., 2 miles)	\$320,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$473,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$149,000
Environmental & Archaeology Studies and Mitigation	\$40,000
Land Acquisition and Surveying (6 acres)	\$3,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$24,000</u>
TOTAL COST OF PROJECT	\$689,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$58,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$7,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (6727 kW-hr @ 0.09 \$/kW-hr)	\$1,000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$66,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	100
Annual Cost of Water (\$ per acft)	\$660
Annual Cost of Water (\$ per 1,000 gallons)	\$2.03
D. Verseet	100001-
B. Yeganeh	4/23/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
City of Pflugerville - City of Pflugerville Reuse	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$O
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$1,935,000
Transmission Pipeline (0 in dia., 6 miles)	\$1,995,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$1,667,000
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$5,597,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$1,859,000
Environmental & Archaeology Studies and Mitigation	\$138,000
Land Acquisition and Surveying (34 acres)	\$95,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$270,000</u>
TOTAL COST OF PROJECT	\$7,959,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$666,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$85,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (1775065 kW-hr @ 0.09 \$/kW-hr)	\$160,000
Purchase of Water (4000 acft/vr @ 0 \$/acft)	\$0
TOTAL ANNUAL COST	\$911.0 <u>00</u>
	₩ ₩,
Available Project Yield (acft/yr), based on a Peaking Factor of 1	4,000
Annual Cost of Water (\$ per acft)	\$228
Annual Cost of Water (\$ per 1,000 gallons)	\$0.70
CW	2/27/2015
Or at Entimote Summers	
---	-----------------------
Cost Estimate Summary Water Supply Project Option	
νιαιεί δυρριγ Γισμού Οριιου 41518 Prices	
STP - Alternate Canal Deliverv	
Cost based on FNR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$5,017,000
Transmission Pipeline (0 in dia., 0 miles)	\$458,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$5,475,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	¢4 803 000
and Contingencies (30 % for pipes & 33 % for an outer racinges)	⊅1,6ອວ,000 ¢21,000
Environmental & Archaeology Studies and Willigation	⊅∠ 1,000 ¢20,000
Land Acquisition and Surveying (5 acres)	⊅∠∪,∪∪∪ ¢⊃c0,000
Interest During Construction (4% for 1 years with a 1% KOI)	<u>⊅∠00,000</u>
TOTAL COST OF PROJECT	φ <i>ι</i> ,609,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$642,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$130,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (1148478 kW-hr @ 0.09 \$/kW-hr)	\$103,000
Purchase of Water (12727 acft/vr @ 135 \$/acft)	\$1,718,000
TOTAL ANNUAL COST	\$2,593,000
	+-;
Available Project Yield (acft/yr), based on a Peaking Factor of 4	12,727
Annual Cost of Water (\$ per acft)	\$204
Annual Cost of Water (\$ per 1,000 gallons)	\$0.63
	4/17/2015
NDH	4/17/2015

Cost Estimato Summary								
Water Supply Project Option								
41518 Prices								
LCRA - Carrizo-Wilcox GW Importation								
Cost based on ENR CCI 9552 for 41518 and								
a PPI of 187 for 41518								
	Estimated Costs							
Item	for Facilities							
CAPITAL COST								
Dam and Reservoir (Conservation Pool acft, acres)	\$0							
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0							
Terminal Storage (Conservation Pool acft, acres)	\$0							
Intake Pump Stations (0 MGD)	\$0							
Transmission Pipeline (0 in dia., 0 miles)	\$0							
Transmission Pump Station(s) & Storage Tank(s)	\$0							
Well Fields (Wells, Pumps, and Piping)	\$0							
Storage Tanks (Other Than at Booster Pump Stations)	\$0							
Water Treatment Plant (0 MGD)	\$0							
Integration, Relocations, & Other	\$440,000,000							
TOTAL COST OF FACILITIES	\$440,000,000							
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,								
and Contingencies (30% for pipes & 35% for all other facilities)	\$154,000,000							
Environmental & Archaeology Studies and Mitigation	\$0							
Land Acquisition and Surveying (0 acres)	\$0							
Interest During Construction (4% for 1 years with a 1% ROI)	\$20,790,000							
TOTAL COST OF PROJECT	\$614,790,000							
ANNUAL COST								
Debt Service (5.5 percent 20 years)	\$51 445 000							
Reservoir Debt Service (5.5 percent, 40 years)	φοι,++ο,000 \$0							
Operation and Maintenance	ψυ							
Intake Dipoline Dump Station (1% of Cost of Eacilities)	¢۵							
Dam and Posorvoir (1.5% of Cost of Facilities)	ወ ም							
Water Treatment Plant (2.5% of Cost of Facilities)	ው የ							
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	Φ Φ							
Pumping Energy Costs (0 KW-fit @ 0.09 ϕ /KW-fit)	Φ Φ							
	<u>⊅∪</u> ¢51 445 000							
I UTAL ANNUAL CUST	əə 1,44 3, 000							
Available Project Yield (acft/yr), based on a Peaking Factor of 1	35,000							
Annual Cost of Water (\$ per acft)	\$1,470							
Annual Cost of Water (\$ per 1,000 gallons)	\$4.51							
Note: One or more cost element has been calculated externally								
NDH	4/22/2015							

Cost Estimate Summary				
Water Supply Project Option				
41518 Prices				
LCRA - Import Return Flows from Williamson Count	y			
Cost based on ENR CCI 9552 for 41518 and				
a PPI of 187 for 41518				
	Estimated Costs			
Item	for Facilities			
CAPITAL COST	٩٩			
Dam and Reservoir (Conservation Pool acit, acres)	\$U \$0			
Off-Channel Storage/Ring Dike (Conservation Pool actt, acres)	\$U \$0			
Terminal Storage (Conservation Pool actt, acres)	\$U			
Intake Pump Stations (0 MGD)	\$4,322,000			
Transmission Pipeline (0 in dia., 0 miles)	\$26,350,000			
Transmission Pump Station(s) & Storage Tank(s)	\$0			
Well Fields (Wells, Pumps, and Piping)	\$0			
Storage Tanks (Other Than at Booster Pump Stations)	\$0			
Water Treatment Plant (0.1 MGD)	\$7,400,000			
Integration, Relocations, & Other	\$0			
TOTAL COST OF FACILITIES	\$38,072,000			
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,				
and Contingencies (30% for pipes & 35% for all other facilities)	\$12,008,000			
Environmental & Archaeology Studies and Mitigation	\$728,000			
Land Acquisition and Surveying (5 acres)	\$1,552,000			
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,833,000</u>			
TOTAL COST OF PROJECT	\$54,193,000			
ANNUAL COST				
Debt Service (5.5 percent, 20 years)	\$4,535,000			
Reservoir Debt Service (5.5 percent, 40 years)	\$0			
Operation and Maintenance				
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$372.000			
Dam and Reservoir (1.5% of Cost of Facilities)	\$0			
Water Treatment Plant (2.5% of Cost of Facilities)	\$185,000			
Pumping Energy Costs (4270413 kW-br $@$ 0.09 \$/kW-br)	\$384,000			
Purchase of Water (acft/ur @_\$/acft)	\$0 \$0			
	<u>\$0</u> \$5 476 000			
	40,470,000			
Available Project Yield (acft/yr), based on a Peaking Factor of 1	25,000			
Annual Cost of Water (\$ per acft)	\$219			
Annual Cost of Water (\$ per 1,000 gallons)	\$0.67			
Note: One or more cost element has been calculated externally				
NDH	4/27/2015			

Cost Estimate Summary Water Supply Project Option 41518 Prices	
LCRA - Supplement B&E Inflows with Brackish Ground	water
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool actt, acres)	\$0 \$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$0 \$
Transmission Pipeline (0 in dia., 0 miles)	\$0 \$
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$22,871,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$22,871,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$10,377,000
Environmental & Archaeology Studies and Mitigation	\$500,000
Land Acquisition and Surveying (5 acres)	\$35,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,183,000</u>
TOTAL COST OF PROJECT	\$34,966,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$2,926,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (5.2555638144375% of Cost of Facilities)	\$1,202,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (7500000 kW-hr @ 0.09 \$/kW-hr)	\$675,000
Purchase of Water (12000 acft/yr @ 100 \$/acft)	<u>\$1,200,000</u>
TOTAL ANNUAL COST	\$6,003,000
Available Project Yield (acft/vr), based on a Peaking Factor of 1	12.000
Annual Cost of Water (\$ per acft)	.500
Annual Cost of Water (\$ per 1,000 gallons)	\$1.53
Note: One or more cost element has been calculated externally	
NDH	4/27/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices LCRA - Brackish GW Desalination from Gulf Coast Aquifer

Cost based on ENR CCI 9552 for 41518 and

a PPI of 187 for 41518

ltem	Estimated Costs for Facilities			
CAPITAL COST				
Dam and Reservoir (Conservation Pool acft, acres)	\$0			
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0			
Terminal Storage (Conservation Pool acft, acres)	\$0			
Intake Pump Stations (0 MGD)	\$0			
Transmission Pipeline (0 in dia., 0 miles)	\$0			
Transmission Pump Station(s) & Storage Tank(s)	\$0			
Well Fields (Wells, Pumps, and Piping)	\$0			
Storage Tanks (Other Than at Booster Pump Stations)	\$0			
Water Treatment Plant (0 MGD)	\$0			
Integration, Relocations, & Other	\$198,250,000			
TOTAL COST OF FACILITIES	\$198,250,000			
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,				
and Contingencies (30% for pipes & 35% for all other facilities)	\$69,388,000			
Environmental & Archaeology Studies and Mitigation	\$0			
Land Acquisition and Surveying (0 acres)	\$0			
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$9,368,000</u>			
TOTAL COST OF PROJECT	\$277,006,000			
ANNUAL COST				
Debt Service (5.5 percent, 20 years)	\$23,180,000			
Reservoir Debt Service (5.5 percent, 40 years)	\$0			
Operation and Maintenance				
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0			
Dam and Reservoir (1.5% of Cost of Facilities)	\$0			
Water Treatment Plant (2.5% of Cost of Facilities)	\$0			
Pumping Energy Costs (0 kW-hr @ 0.09 \$/kW-hr)	\$0			
Purchase of Water (90000 acft/yr @ 0 \$/acft)	<u>\$0</u>			
TOTAL ANNUAL COST	\$23,180,000			
Available Project Yield (acft/yr), based on a Peaking Factor of 1	22,400			
Annual Cost of Water (\$ per acft)	\$1,035			
Annual Cost of Water (\$ per 1,000 gallons)	\$3.18			
Note: One or more cost element has been calculated externally				
NDH	4/22/2015			

Cost Estimate Summary Water Supply Project Option	
A1518 Prices	
LCRA - Baylor Creek Reservoir	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool 48390 acft, 1125 acres)	\$42,180,000
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$33,752,000
Transmission Pipeline (0 in dia., 8 miles)	\$54,145,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$0
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$130,077,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$42,820,000
Environmental & Archaeology Studies and Mitigation	\$195,000
Land Acquisition and Surveying (1130 acres)	\$56,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$6,061,000</u>
TOTAL COST OF PROJECT	\$179,209,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$10.059.000
Reservoir Debt Service (5.5 percent, 40 years)	\$3.677.000
Operation and Maintenance	+-,- ,
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$1,385,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$633,000
Water Treatment Plant (2.5% of Cost of Facilities)	\$0 \$0
Pumping Energy Costs (5041899 kW-br $@$ 0.09 kW-br)	\$454 000
Purchase of Water (90000 acft/vr @ 0 \$/acft)	\$0 \$0
	\$16 208 000
	<i>\</i> 10,200,000
Available Project Yield (acft/yr), based on a Peaking Factor of 1	18,000
Annual Cost of Water (\$ per acft)	\$900
Annual Cost of Water (\$ per 1,000 gallons)	\$2.76
Note: One or more cost element has been calculated externally	
NDH	4/17/2015

Cost Estimate Summary	
Water Supply Project Option	
41518 Prices	
LCRA - Aquifer Storage, Recharge and Recovery	
Cost based on ENR CCI 9552 for 41518 and	
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	•
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (9 MGD)	\$4,280,000
Transmission Pipeline (24 in dia., 5 miles)	\$2,589,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$5,486,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (4.5 MGD)	\$15,807,000
Integration, Relocations, & Other	\$0
TOTAL COST OF FACILITIES	\$28,162,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$9,727,000
Environmental & Archaeology Studies and Mitigation	\$316,000
Land Acquisition and Surveying (14 acres)	\$46,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,339,000</u>
TOTAL COST OF PROJECT	\$39,590,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$3,313,000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$188,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$1,581,000
Pumping Energy Costs (3861420 kW-hr @ 0.09 \$/kW-hr)	\$348,000
Purchase of Water (acft/vr @ \$/acft)	\$0
TOTAL ANNUAL COST	\$5,430,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	5,048
Annual Cost of Water (\$ per acft)	\$1,076
Annual Cost of Water (\$ per 1,000 gallons)	\$3.30
	4/15/2015
B. reganen	4/15/2015

Cost Estimate Summary	
Water Supply Project Option	
ICRA - Enhanced Recharge	
Cost based on END CCI 0552 for 41519 and	
a PPI of 187 for 41518	
	Estimated Costs
ltem	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, 20.66 acres)	\$11,057,000
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$605,000
Transmission Pipeline (0 in dia., 0 miles)	\$328,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$22,569,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (0 MGD)	\$0
Integration, Relocations, & Other	\$2,793,000
TOTAL COST OF FACILITIES	\$37,352,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$13,057,000
Environmental & Archaeology Studies and Mitigation	\$703,000
Land Acquisition and Surveying (115 acres)	\$582,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,810,000</u>
TOTAL COST OF PROJECT	\$53,504,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$3,114,000
Reservoir Debt Service (5.5 percent, 40 years)	\$1,015,000
Operation and Maintenance	· · ·
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$244,000
Dam and Reservoir (1.5% of Cost of Facilities)	\$166,000
Water Treatment Plant (2.5% of Cost of Facilities)	\$0
Pumping Energy Costs (5879819 kW-hr @ 0.09 \$/kW-hr)	\$529,000
Well Leases	\$3,267,000
TOTAL ANNUAL COST	\$8,335,000
	+-,,
Available Project Yield (acft/yr), based on a Peaking Factor of 1	10,000
Annual Cost of Water (\$ per acft)	\$834
Annual Cost of Water (\$ per 1,000 gallons)	\$2.56
Note: One or more cost element has been calculated externally	
CW	4/22/2015

Cost Estimate Summary Water Supply Project Option 41518 Prices	
City of Austin - Brackish Groundwater Desalinatio	n
Cost based on FNR CCI 9552 for 41518 and	-
a PPI of 187 for 41518	
	Estimated Costs
Item	for Facilities
CAPITAL COST	
Dam and Reservoir (Conservation Pool acft, acres)	\$0
Off-Channel Storage/Ring Dike (Conservation Pool acft, acres)	\$0
Terminal Storage (Conservation Pool acft, acres)	\$0
Intake Pump Stations (0 MGD)	\$3,398,000
Transmission Pipeline (0 in dia., 13 miles)	\$7,069,000
Transmission Pump Station(s) & Storage Tank(s)	\$0
Well Fields (Wells, Pumps, and Piping)	\$15,987,000
Storage Tanks (Other Than at Booster Pump Stations)	\$0
Water Treatment Plant (4.5 MGD)	\$12,218,000
Integration. Relocations. & Other	\$0
TOTAL COST OF FACILITIES	\$38,672,000
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,	
and Contingencies (30% for pipes & 35% for all other facilities)	\$13,182,000
Environmental & Archaeology Studies and Mitigation	\$790,000
Land Acquisition and Surveying (28 acres)	\$92,000
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$1,846,000</u>
TOTAL COST OF PROJECT	\$54,582,000
ANNUAL COST	
Debt Service (5.5 percent, 20 years)	\$4,567.000
Reservoir Debt Service (5.5 percent, 40 years)	\$0
Operation and Maintenance	▼ -
Intake Pineline Pump Station (1% of Cost of Facilities)	\$316.000
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$2 358.000
Pumping Energy Costs ($1/128202 \text{ k/k/shr} \oplus 0.09 \text{ s/k/k/shr}$)	\$372 000
Fulliping Linergy 0000 ($+120202$ kW in ≤ 0.00 ψ kW in, Durchase of Water (act/wr m \$/actt)	ΨC: 2,000 \$0
	<u>₩</u> \$7 613 000
	Ψ1,010,000
Available Project Yield (acft/vr) based on a Peaking Factor of 2	5 000
Annual Cost of Water (\$ ner acft)	\$1 523
Annual Cost of Water (\$ per 1 000 gallons)	\$4 67
Annual Obst of Water (& per 1,000 gallons)	ψ 1.0.
B. Yedaneh	4/20/2015

Cost Estimate Summary								
Water Supply Project Option								
41518 Prices								
COA - Reclaim Water in Colorado Alluvium								
Cost based on ENR CCI 9552 for 41518 and								
a PPI of 187 for 41518								
	Estimated Costs							
Item	for Facilities							
Dam and Reservoir (Conservation Real, active acros)	¢0							
Off-Channel Storage/Ring Dike (Conservation Pool acft acres)	\$0 \$0							
Terminal Storage (Conservation Pool acft, acres)	\$0 \$0							
Intake Pump Stations (0 MGD)	\$0 \$0							
Transmission Pipeline (0 in dia 0 miles)	¢≎ \$0							
Transmission Pump Station(s) & Storage Tank(s)	¢° \$0							
Well Fields (Wells, Pumps, and Pining)	¢° \$0							
Storage Tanks (Other Than at Booster Pump Stations)	\$0 \$0							
Water Treatment Plant (0 MGD)	\$° \$0							
Integration. Relocations. & Other	\$108.675.000							
TOTAL COST OF FACILITIES	\$108.675.000							
	+							
Engineering and Feasibility Studies, Legal Assistance, Financing, Bond Counsel,								
and Contingencies (30% for pipes & 35% for all other facilities)	\$38,036,000							
Environmental & Archaeology Studies and Mitigation	\$0							
Land Acquisition and Surveying (0 acres)	\$0							
Interest During Construction (4% for 1 years with a 1% ROI)	<u>\$5,135,000</u>							
TOTAL COST OF PROJECT	\$151,846,000							
ANNUAL COST								
Debt Service (5.5 percent, 20 years)	\$12,706,000							
Reservoir Debt Service (5.5 percent, 40 years)	\$0							
Operation and Maintenance								
Intake, Pipeline, Pump Station (1% of Cost of Facilities)	\$0							
Dam and Reservoir (1.5% of Cost of Facilities)	\$0							
Water Treatment Plant (2.5% of Cost of Facilities)	\$0							
Pumping Energy Costs (0 kW-hr @ 0.09 \$/kW-hr)	\$0							
Purchase of Water (90000 acft/yr @ 0 \$/acft)	<u>\$0</u>							
TOTAL ANNUAL COST	\$12,706,000							
Available Project Yield (acft/yr), based on a Peaking Factor of 1	30,000							
Annual Cost of Water (\$ per acft)	\$424							
Annual Cost of Water (\$ per 1,000 gallons)	\$1.30							
Note: One or more cost element has been calculated externally								
KP	4/23/2015							

Cost Estimate Summary	
Water Supply Project Option	
41010 FILCES City of Puda - City of Puda Direct Potable Reuse	
Cost based on ENK UCI 9552 for 41518 and	
a PPI 01 18/ 101 41316	
ltom	Estimated Costs for Facilities
Dom and Posonyoir (Conservation Pool acts acres)	\$0
Off Channel Storage/Ping Dike (Conservation Pool acft acres)	\$0
UII-Criannel Storage (Conservation Bool, acts)	Ψ0 \$0
Letelle Dure Otations (0 MOD)	Ψ0 \$0
Intake Pump Stations (U MGD)	ψυ \$0
Transmission Pipeline (U in dia., U miles)	ψυ ¢0
Iransmission Pump Station(s) & Storage Lank(s)	ΦU Φ0
Well Fields (Wells, Pumps, and Piping)	υφ OΦ
Storage Tanks (Other Than at Booster Pump Stations)	ΦU Φ04 F04 000
Water Treatment Plant (2 MGD)	\$21,561,000
Integration, Relocations, & Other	۵۵۲ ۲ ۵۲ ۵۵۵
TOTAL COST OF FACILITIES	\$21,561,000
5 1 English Chudies Level Assistance Einspeing Rend Councel	
Engineering and Feasibility Studies, Legal Assistance, Financing, bond Counsel, and Contingencies (30% for pines & 20% for all other facilities)	\$4 312 000
Environmental & Archaeology Studies and Mitigation	Ψ¬, U , 2 , U
Land Acquisition and Survoving (1 acres)	\$0 \$0
Lateract During Construction (1% for 1 years with a 1% ROI)	000 2002
	<u>\$300,000</u> \$26 770 000
	Ψ2 0,113,000
ANNUAL COST	
Debt Service (5.5 percent. 20 vears)	\$2,241,000
Reservoir Debt Service (5.5 percent, 40 years)	ç_,_ ,_ \$0
Operation and Maintenance	
Intake Pipeline Pump Station (1% of Cost of Facilities)	\$0
Dam and Reservoir (1.5% of Cost of Facilities)	\$0
Water Treatment Plant (2.5% of Cost of Facilities)	\$700.000
Pumping Energy Costs ($0 \text{ kW-hr} @ 0.09 \text{ s/kW-hr}$)	\$0
Purchase of Water (1 active @ 633000 \$/active in)	\$0 \$0
TOTAL ANNILLI COST	<u>**</u> \$2 941_000
	Ψ2,071,000
Available Project Yield (acft/yr), based on a Peaking Factor of 2	2,240
Annual Cost of Water (\$ per acft)	\$1,313
Annual Cost of Water (\$ per 1,000 gallons)	\$4.03
Note: One or more cost element has been calculated externally	
Jaime Burke	11/2/2015

THIS PAGE LEFT BLANK INTENTIONALLY

2016 LCRWPG WATER PLAN

APPENDIX 5D

ENVIRONMENTAL IMPACTS OF NEW STRATEGIES IN THE 2016 REGION K PLAN

SUBSISTENCE FLOWS

2020 Colorado River Instream Flow Analysis

2020 СР

CP K10000	MONTH	FLOW	STR2020	ASR	DIFFERENCE	FLOW	STR2020	ASR	DIFFERENCE	FLOW	STR2020	ASR	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	Jan	19,369	79.7%	79.7%	0.0%	30,252	63.5%	63.5%	0.0%	51,527	50.0%	50.0%	0.0%
	Feb	16,828	85.1%	85.1%	0.0%	33,156	54.1%	54.1%	0.0%	50,317	43.2%	43.2%	0.0%
	Mar	12,543	82.4%	82.4%	0.0%	32,650	45.9%	45.9%	0.0%	63,701	35.1%	35.1%	0.0%
	Apr	16,066	64.9%	64.9%	0.0%	33,382	40.5%	40.5%	0.0%	60,159	35.1%	35.1%	0.0%
	May	18,692	67.6%	67.6%	0.0%	60,565	33.8%	33.8%	0.0%	85,898	27.0%	27.0%	0.0%
	Jun	22,076	48.6%	48.6%	0.0%	58,552	28.4%	28.4%	0.0%	89,970	25.7%	27.0%	1.4%
	Jul	13,035	35.1%	35.1%	0.0%	35,478	13.5%	13.5%	0.0%	55,708	12.2%	12.2%	0.0%
	Aug	6,579	31.1%	31.1%	0.0%	19,307	16.2%	16.2%	0.0%	32,097	2.7%	2.7%	0.0%
	Sep	11,187	59.5%	59.5%	0.0%	24,397	37.8%	37.8%	0.0%	36,714	18.9%	18.9%	0.0%
	Oct	9,039	75.7%	75.7%	0.0%	22,136	58.1%	58.1%	0.0%	46,054	28.4%	28.4%	0.0%
	Nov	10,294	87.8%	87.8%	0.0%	28,919	56.8%	56.8%	0.0%	45,461	39.2%	39.2%	0.0%
	Dec	12,420	83.8%	83.8%	0.0%	28,899	54.1%	54.1%	0.0%	45,870	41.9%	41.9%	0.0%

BASE FLOWS - DRY CONDITIONS

2020

CP K20000	
Wharton Co)

		SUBSISTEN	NCE FLOWS		B	BASE FLOWS - DRY CONDITIONS				BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	STR2020	ASR	DIFFERENCE	FLOW	STR2020	ASR	DIFFERENCE	FLOW	STR2020	ASR	DIFFERENCE	
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
Jan	19,369	81.1%	81.1%	0.0%	30,252	62.2%	62.2%	0.0%	51,527	44.6%	44.6%	0.0%	
Feb	16,828	83.8%	83.8%	0.0%	33,156	55.4%	55.4%	0.0%	50,317	39.2%	39.2%	0.0%	
Mar	12,543	97.3%	97.3%	0.0%	32,650	60.8%	60.8%	0.0%	63,701	36.5%	36.5%	0.0%	
Apr	16,066	94.6%	94.6%	0.0%	33,382	58.1%	58.1%	0.0%	60,159	36.5%	36.5%	0.0%	
May	18,692	95.9%	95.9%	0.0%	60,565	40.5%	40.5%	0.0%	85,898	32.4%	32.4%	0.0%	
Jun	22,076	91.9%	91.9%	0.0%	58,552	47.3%	47.3%	0.0%	89,970	27.0%	27.0%	0.0%	
Jul	13,035	90.5%	90.5%	0.0%	35,478	66.2%	66.2%	0.0%	55,708	23.0%	23.0%	0.0%	
Aug	6,579	94.6%	94.6%	0.0%	19,307	81.1%	81.1%	0.0%	32,097	68.9%	68.9%	0.0%	
Sep	11,187	93.2%	93.2%	0.0%	24,397	81.1%	81.1%	0.0%	36,714	45.9%	45.9%	0.0%	
Oct	9,039	91.9%	91.9%	0.0%	22,136	67.6%	67.6%	0.0%	46,054	32.4%	32.4%	0.0%	
Nov	10,294	87.8%	87.8%	0.0%	28,919	52.7%	52.7%	0.0%	45,461	39.2%	39.2%	0.0%	
Dec	12,420	86.5%	86.5%	0.0%	28,899	54.1%	54.1%	0.0%	45,870	33.8%	33.8%	0.0%	

BASE FLOWS - AVERAGE CONDITIONS

2020 CP J10000

		SUBSISTEN	NCE FLOWS		B	ASE FLOWS - D	RY CONDITIO	NS	BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	ASR	DIFFERENCE	FLOW	BASE	ASR	DIFFERENCE	FLOW	BASE	ASR	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
Jan	20,906	77.0%	77.0%	0.0%	29,944	62.2%	62.2%	0.0%	50,912	40.5%	40.5%	0.0%
Feb	20,826	77.0%	77.0%	0.0%	32,767	59.5%	59.5%	0.0%	49,706	39.2%	39.2%	0.0%
Mar	23,058	93.2%	93.2%	0.0%	32,281	77.0%	77.0%	0.0%	62,717	40.5%	40.5%	0.0%
Apr	17,792	100.0%	100.0%	0.0%	32,965	89.2%	89.2%	0.0%	58,136	45.9%	45.9%	0.0%
May	26,132	100.0%	100.0%	0.0%	59,397	90.5%	90.5%	0.0%	80,918	70.3%	70.3%	0.0%
Jun	31,775	97.3%	97.3%	0.0%	57,540	90.5%	90.5%	0.0%	85,686	77.0%	77.0%	0.0%
Jul	21,029	100.0%	100.0%	0.0%	35,048	94.6%	94.6%	0.0%	55,031	79.7%	79.7%	0.0%
Aug	11,683	100.0%	100.0%	0.0%	19,061	100.0%	100.0%	0.0%	31,728	89.2%	89.2%	0.0%
Sep	16,602	100.0%	100.0%	0.0%	24,099	97.3%	97.3%	0.0%	36,298	87.8%	87.8%	0.0%
Oct	11,683	100.0%	100.0%	0.0%	21,890	90.5%	90.5%	0.0%	45,562	52.7%	52.7%	0.0%
Nov	12,020	87.8%	87.8%	0.0%	28,562	50.0%	50.0%	0.0%	44,926	32.4%	33.8%	1.4%
Dec	18,508	82.4%	82.4%	0.0%	28,530	47.3%	47.3%	0.0%	45,316	31.1%	31.1%	0.0%

2020 С

CP J30000	
Bastrop Co.	

		SUBSISTEM	NCE FLOWS		B	ASE FLOWS - D	RY CONDITIO	NS	BASE FLOWS - AVERAGE CONDITIONS			
MONTH	FLOW	BASE	ASR	DIFFERENCE	FLOW	BASE	ASR	DIFFERENCE	FLOW	BASE	ASR	DIFFERENCE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
Jan	12,789	79.7%	79.7%	0.0%	19,246	58.1%	58.1%	0.0%	26,624	41.9%	41.9%	0.0%
Feb	15,217	67.6%	67.6%	0.0%	17,605	64.9%	64.9%	0.0%	27,602	44.6%	44.6%	0.0%
Mar	16,848	93.2%	93.2%	0.0%	16,848	93.2%	93.2%	0.0%	30,559	66.2%	66.2%	0.0%
Apr	11,127	98.6%	98.6%	0.0%	17,078	95.9%	95.9%	0.0%	37,785	68.9%	68.9%	0.0%
May	16,909	95.9%	95.9%	0.0%	35,601	91.9%	91.9%	0.0%	50,666	82.4%	82.4%	0.0%
Jun	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	85.1%	85.1%	0.0%
Jul	8,424	100.0%	100.0%	0.0%	21,336	97.3%	97.3%	0.0%	37,507	91.9%	91.9%	0.0%
Aug	7,563	100.0%	100.0%	0.0%	11,929	100.0%	100.0%	0.0%	23,427	98.6%	98.6%	0.0%
Sep	7,319	100.0%	100.0%	0.0%	14,043	97.3%	97.3%	0.0%	25,170	89.2%	89.2%	0.0%
Oct	7,809	100.0%	100.0%	0.0%	15,064	86.5%	86.5%	0.0%	26,624	66.2%	66.2%	0.0%
Nov	10,711	79.7%	79.7%	0.0%	16,840	60.8%	60.8%	0.0%	25,230	40.5%	40.5%	0.0%
Dec	11,437	75.7%	75.7%	0.0%	19,123	51.4%	51.4%	0.0%	27,669	33.8%	33.8%	0.0%

2020 Freshwater Inflows to Matagorda Bay

	SPRINGTIME ONSET FLOW CRITERIA MET (3 CONSECUTIVE MONTHS DURING JAN-MAY)										
CRITERIA	TARGET	ST	R2020		DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	114,000	45	60.8%	45	60.8%	0.0%					
MBHE 2	168,700	43	58.1%	43	58.1%	0.0%					
MBHE 3	246,200	40	54.1%	40	54.1%	0.0%					
MBHE 4	433,200	25	33.8%	25	33.8%	0.0%					

FALL ONSET FLOW CRITERIA MET (3 CONSECUTIVE MONTHS DURING AUG-OCT)											
CRITERIA	TARGET	ST	R2020		DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	81,000	50	67.6%	50	67.6%	0.0%					
MBHE 2	119,900	45	60.8%	45	60.8%	0.0%					
MBHE 3	175,000	43	58.1%	43	58.1%	0.0%					
MBHE 4	307,800	35	47.3%	35	47.3%	0.0%					

	INTERVENING SIX MONTHS FLOW CRITERIA MET										
CRITERIA	TARGET	ST	R2020		DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	105,000	47	63.5%	47	63.5%	0.0%					
MBHE 2	155,400	43	58.1%	43	58.1%	0.0%					
MBHE 3	226,800	41	55.4%	41	55.4%	0.0%					
MBHE 4	399,000	28	37.8%	27	36.5%	-1.4%					

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET									
CRITERIA	TARGET	ST	R2020		DIFFERENCE				
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%			
THRESHOLD 15,000 561 63.2% 561 63.2%									

2016 LCRWPG WATER PLAN

APPENDIX 5E

ENVIRONMENTAL IMPACTS OF STRATEGIES FROM THE 2011 REGION K PLAN

2010 Freshwater Inflows to Matagorda Bay

SPRINGTIME ONSET FLOW CRITERIA MET											
CRITERIA	TARGET	BAS	SE .	STRAT	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	114,000	43	72.9%	43	72.9%	0.0%					
MBHE 2	168,700	41	69.5%	41	69.5%	0.0%					
MBHE 3	246,200	38	64.4%	38	64.4%	0.0%					
MBHE 4	433,200	28	47.5%	28	47.5%	0.0%					

FALL ONSET FLOW CRITERIA MET											
CRITERIA	TARGET	BAS	ЭЕ ЭЕ	STRAT	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	81,000	34	57.6%	34	57.6%	0.0%					
MBHE 2	119,900	29	49.2%	29	49.2%	0.0%					
MBHE 3	175,000	20	33.9%	20	33.9%	0.0%					
MBHE 4	307,800	13	22.0%	13	22.0%	0.0%					

INTERVENING SIX MONTHS FLOW CRITERIA MET											
CRITERIA	ITERIA TARGET BASE STRATEGY DIFF										
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	105,000	52	88.1%	52	88.1%	0.0%					
MBHE 2	155,400	45	76.3%	45	76.3%	0.0%					
MBHE 3	226,800	40	67.8%	40	67.8%	0.0%					
MBHE 4	399,000	31	52.5%	31	52.5%	0.0%					

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET										
CRITERIA	ITERIA TARGET BASE STRATEGY DIFFERE									
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%				
THRESHOLD	15,000	546	77.1%	546	77.1%	0.0%				

2060 Freshwater Inflows to Matagorda Bay

	SPRINGTIME ONSET FLOW CRITERIA MET										
CRITERIA	TARGET BASE STRATEGY DIFFEREN										
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	114,000	48	81.4%	46	78.0%	-3.4%					
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%					
MBHE 3	246,200	35	59.3%	37	62.7%	3.4%					
MBHE 4	433,200	22	37.3%	22	37.3%	0.0%					

	FALL ONSET FLOW CRITERIA MET											
CRITERIA	CRITERIA TARGET BASE STRATEGY I											
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%						
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%						
MBHE 2	119,900	31	52.5%	30	50.8%	-1.7%						
MBHE 3	175,000	19	32.2%	17	28.8%	-3.4%						
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%						

	INTERVENING SIX MONTHS FLOW CRITERIA MET											
CRITERIA TARGET BASE STRATEGY DIFFEREN												
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%						
MBHE 1	105,000	53	89.8%	54	91.5%	1.7%						
MBHE 2	155,400	46	78.0%	45	76.3%	-1.7%						
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%						
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%						

NU	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET											
CRITERIA TARGET BASE STRATEGY DIFFERENC												
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%						
THRESHOLD	FHRESHOLD 15,000 540 76.3% 530 74.9% -1.4%											

2010			SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP K10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	91.5%	91.5%	0.0%	30,252	74.6%	74.6%	0.0%	51,527	57.6%	57.6%	0.0%
	FEB	16,828	93.2%	93.2%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	61.0%	61.0%	0.0%
	MAR	12,543	100.0%	100.0%	0.0%	32,650	79.7%	79.7%	0.0%	63,701	50.8%	50.8%	0.0%
	APR	16,066	79.7%	79.7%	0.0%	33,382	57.6%	57.6%	0.0%	60,159	52.5%	52.5%	0.0%
	MAY	18,692	83.1%	83.1%	0.0%	60,565	61.0%	61.0%	0.0%	85,898	59.3%	59.3%	0.0%
	JUN	22,076	62.7%	62.7%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	42.4%	42.4%	0.0%
	JUL	13,035	42.4%	42.4%	0.0%	35,478	32.2%	32.2%	0.0%	55,708	32.2%	32.2%	0.0%
	AUG	6,579	74.6%	74.6%	0.0%	19,307	35.6%	35.6%	0.0%	32,097	25.4%	25.4%	0.0%
	SEP	11,187	66.1%	66.1%	0.0%	24,397	50.8%	50.8%	0.0%	36,714	44.1%	44.1%	0.0%
	OCT	9,039	88.1%	88.1%	0.0%	22,136	74.6%	74.6%	0.0%	46,054	55.9%	55.9%	0.0%
	NOV	10,294	100.0%	100.0%	0.0%	28,919	74.6%	74.6%	0.0%	45,461	49.2%	49.2%	0.0%
	DEC	12,420	98.3%	98.3%	0.0%	28,899	78.0%	78.0%	0.0%	45,870	64.4%	64.4%	0.0%

2010

SUBSISTENCE FLOWS **BASE FLOWS - DRY CONDITIONS BASE FLOWS - AVERAGE CONDITIONS** MONTH CP K20000 FLOW BASE STRATEGY DIFFERENCE FLOW BASE STRATEGY DIFFERENCE FLOW BASE STRATEGY DIFFERENCE (AC-FT/MO) % TIME MET % TIME MET (AC-FT/MO) % TIME MET % TIME MET (AC-FT/MO) % TIME MET % TIME MET Wharton Co. % % % 30,252 JAN 19,369 91.5% 91.5% 0.0% 74.6% 74.6% 0.0% 51,527 52.5% 52.5% 0.0% FEB 16,828 91.5% 91.5% 0.0% 33,156 72.9% 72.9% 0.0% 50.317 57.6% 57.6% 0.0% MAR 12,543 100.0% 100.0% 0.0% 32,650 86.4% 86.4% 0.0% 63,701 49.2% 49.2% 0.0% APR 16,066 91.5% 91.5% 0.0% 33,382 64.4% 64.4% 0.0% 60,159 54.2% 54.2% 0.0% MAY 100.0% 100.0% 60,565 62.7% 85,898 61.0% 18,692 0.0% 62.7% 0.0% 61.0% 0.0% 58,552 45.8% JUN 22,076 93.2% 93.2% 0.0% 50.8% 50.8% 0.0% 89,970 45.8% 0.0% JUL 13,035 98.3% 98.3% 0.0% 35,478 40.7% 40.7% 0.0% 55,708 30.5% 30.5% 0.0% AUG 6,579 98.3% 98.3% 0.0% 19,307 84.7% 84.7% 0.0% 32,097 49.2% 49.2% 0.0% SEP 11,187 93.2% 93.2% 0.0% 24,397 61.0% 61.0% 0.0% 36,714 49.2% 49.2% 0.0% ОСТ 9,039 91.5% 91.5% 0.0% 22,136 74.6% 74.6% 0.0% 46,054 50.8% 50.8% 0.0% NOV 10,294 100.0% 100.0% 0.0% 28,919 74.6% 74.6% 0.0% 45,461 44.1% 44.1% 0.0% DEC 12,420 98.3% 98.3% 0.0% 28,899 79.7% 79.7% 0.0% 45,870 54.2% 54.2% 0.0%

2010			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP J10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Colorado Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	20,906	86.4%	86.4%	0.0%	29,944	69.5%	69.5%	0.0%	50,912	44.1%	44.1%	0.0%
	FEB	20,826	81.4%	81.4%	0.0%	32,767	64.4%	64.4%	0.0%	49,706	50.8%	50.8%	0.0%
	MAR	23,058	100.0%	100.0%	0.0%	32,281	81.4%	81.4%	0.0%	62,717	47.5%	47.5%	0.0%
	APR	17,792	100.0%	100.0%	0.0%	32,965	86.4%	86.4%	0.0%	58,136	50.8%	50.8%	0.0%
	MAY	26,132	100.0%	100.0%	0.0%	59,397	89.8%	89.8%	0.0%	80,918	72.9%	72.9%	0.0%
	JUN	31,775	100.0%	100.0%	0.0%	57,540	96.6%	96.6%	0.0%	85,686	67.8%	67.8%	0.0%
	JUL	21,029	100.0%	100.0%	0.0%	35,048	98.3%	98.3%	0.0%	55,031	86.4%	86.4%	0.0%
	AUG	11,683	100.0%	100.0%	0.0%	19,061	100.0%	100.0%	0.0%	31,728	96.6%	96.6%	0.0%
	SEP	16,602	100.0%	100.0%	0.0%	24,099	98.3%	98.3%	0.0%	36,298	91.5%	91.5%	0.0%
	OCT	11,683	100.0%	100.0%	0.0%	21,890	89.8%	89.8%	0.0%	45,562	55.9%	55.9%	0.0%
	NOV	12,020	94.9%	94.9%	0.0%	28,562	62.7%	62.7%	0.0%	44,926	42.4%	42.4%	0.0%
	DEC	18,508	88.1%	88.1%	0.0%	28,530	74.6%	74.6%	0.0%	45,316	44.1%	44.1%	0.0%

- 2	2010

SUBSISTENCE FLOWS **BASE FLOWS - DRY CONDITIONS BASE FLOWS - AVERAGE CONDITIONS** FLOW CP J30000 MONTH BASE STRATEGY DIFFERENCE FLOW BASE STRATEGY DIFFERENCE FLOW BASE STRATEGY DIFFERENCE (AC-FT/MO) % TIME MET % TIME MET (AC-FT/MO) % TIME MET % TIME MET (AC-FT/MO) % TIME MET % TIME MET Bastrop Co. % % % JAN 19,246 47.5% 12,789 86.4% 86.4% 0.0% 69.5% 69.5% 0.0% 26,624 47.5% 0.0% FEB 15,217 83.1% 83.1% 0.0% 17,605 83.1% 83.1% 0.0% 27.602 57.6% 57.6% 0.0% MAR 16,848 100.0% 100.0% 0.0% 16,848 100.0% 100.0% 0.0% 30,559 81.4% 81.4% 0.0% APR 11,127 100.0% 100.0% 0.0% 17,078 100.0% 100.0% 0.0% 37,785 66.1% 66.1% 0.0% MAY 16,909 100.0% 100.0% 35,601 91.5% 91.5% 0.0% 50,666 0.0% 0.0% 88.1% 88.1% JUN 12,020 100.0% 100.0% 0.0% 24,873 100.0% 100.0% 0.0% 43,617 96.6% 96.6% 0.0% JUL 8,424 100.0% 100.0% 0.0% 21,336 98.3% 98.3% 0.0% 37,507 94.9% 94.9% 0.0% AUG 7,563 100.0% 100.0% 0.0% 11,929 100.0% 100.0% 0.0% 23,427 100.0% 100.0% 0.0% SEP 7,319 100.0% 100.0% 0.0% 14,043 98.3% 98.3% 0.0% 25,170 83.1% 83.1% 0.0% ОСТ 7,809 100.0% 100.0% 0.0% 15,064 96.6% 96.6% 0.0% 26,624 74.6% 74.6% 0.0% 94.9% NOV 10,711 94.9% 0.0% 16,840 81.4% 81.4% 0.0% 25,230 52.5% 52.5% 0.0% DEC 11,437 89.8% 89.8% 0.0% 19,123 78.0% 78.0% 0.0% 27,669 54.2% 54.2% 0.0%

2060			SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	E FLOWS - AVI	ERAGE COND	ITIONS
CP K10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	86.4%	89.8%	3.4%	30,252	78.0%	78.0%	0.0%	51,527	64.4%	64.4%	0.0%
	FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
	MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
	APR	16,066	86.4%	84.7%	-1.7%	33,382	66.1%	67.8%	1.7%	60,159	44.1%	47.5%	3.4%
	MAY	18,692	81.4%	79.7%	-1.7%	60,565	54.2%	55.9%	1.7%	85,898	47.5%	45.8%	-1.7%
	JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
	JUL	13,035	52.5%	69.5%	16.9%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	32.2%	3.4%
	AUG	6,579	72.9%	98.3%	25.4%	19,307	39.0%	44.1%	5.1%	32,097	27.1%	30.5%	3.4%
	SEP	11,187	71.2%	76.3%	5.1%	24,397	61.0%	59.3%	-1.7%	36,714	59.3%	59.3%	0.0%
	OCT	9,039	89.8%	91.5%	1.7%	22,136	76.3%	74.6%	-1.7%	46,054	55.9%	55.9%	0.0%
	NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	79.7%	1.7%	45,461	64.4%	64.4%	0.0%
	DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	66.1%	3.4%

	2060
CP	K200

2060			SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP K20000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Wharton Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	84.7%	86.4%	1.7%	30,252	78.0%	78.0%	0.0%	51,527	54.2%	57.6%	3.4%
	FEB	16,828	89.8%	89.8%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	61.0%	1.7%
	MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	91.5%	-1.7%	63,701	44.1%	44.1%	0.0%
	APR	16,066	96.6%	91.5%	-5.1%	33,382	71.2%	72.9%	1.7%	60,159	47.5%	49.2%	1.7%
	MAY	18,692	93.2%	94.9%	1.7%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%
	JUN	22,076	88.1%	93.2%	5.1%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	40.7%	0.0%
	JUL	13,035	94.9%	98.3%	3.4%	35,478	40.7%	44.1%	3.4%	55,708	30.5%	28.8%	-1.7%
	AUG	6,579	96.6%	98.3%	1.7%	19,307	64.4%	81.4%	16.9%	32,097	32.2%	44.1%	11.9%
	SEP	11,187	91.5%	94.9%	3.4%	24,397	62.7%	64.4%	1.7%	36,714	57.6%	57.6%	0.0%
	OCT	9,039	91.5%	93.2%	1.7%	22,136	76.3%	74.6%	-1.7%	46,054	54.2%	54.2%	0.0%
	NOV	10,294	96.6%	96.6%	0.0%	28,919	76.3%	78.0%	1.7%	45,461	54.2%	54.2%	0.0%
	DEC	12,420	96.6%	96.6%	0.0%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	59.3%	0.0%

2060			SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS				
CP J10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	
Colorado Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
	JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	72.9%	0.0%	50,912	44.1%	45.8%	1.7%	
	FEB	20,826	83.1%	84.7%	1.7%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	54.2%	0.0%	
	MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	86.4%	-1.7%	62,717	42.4%	42.4%	0.0%	
	APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	74.6%	-1.7%	58,136	49.2%	49.2%	0.0%	
	MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	81.4%	3.4%	80,918	57.6%	57.6%	0.0%	
	JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	89.8%	6.8%	85,686	57.6%	59.3%	1.7%	
	JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	96.6%	5.1%	55,031	50.8%	64.4%	13.6%	
	AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	91.5%	8.5%	
	SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	98.3%	3.4%	36,298	74.6%	81.4%	6.8%	
	OCT	11,683	98.3%	100.0%	1.7%	21,890	76.3%	78.0%	1.7%	45,562	61.0%	61.0%	0.0%	
	NOV	12,020	89.8%	89.8%	0.0%	28,562	61.0%	66.1%	5.1%	44,926	47.5%	49.2%	1.7%	
	DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	78.0%	1.7%	45,316	49.2%	49.2%	0.0%	

0.0%

27,669

74.6%

74.6%

52.5%

2060
CP J30000
Bastrop Co.

DEC

11,437

91.5%

89.8%

		SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDIT	IONS	BASE	E FLOWS - AV	ERAGE COND	ITIONS
MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFE
	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	9
JAN	12,789	84.7%	88.1%	3.4%	19,246	69.5%	72.9%	3.4%	26,624	52.5%	55.9%	
FEB	15,217	84.7%	83.1%	-1.7%	17,605	78.0%	79.7%	1.7%	27,602	62.7%	64.4%	
MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	84.7%	
APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	59.3%	
MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	
JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	93.2%	
JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	83.1%	
AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	98.3%	
SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	98.3%	1.7%	25,170	81.4%	84.7%	
OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	93.2%	3.4%	26,624	66.1%	67.8%	
NOV	10,711	89.8%	91.5%	1.7%	16,840	69.5%	71.2%	1.7%	25,230	50.8%	50.8%	

19,123

-1.7%

STRATEGY DIFFERENCE

55.9%

%

3.4%

1.7%

3.4%

1.7%

0.0%

3.4%

3.4%

0.0%

3.4%

1.7%

0.0%

3.4%

2010 Freshwater Inflows to Matagorda Bay

	SPRINGTIME ONSET FLOW CRITERIA MET												
CRITERIA	TARGET	BAS	STRAT	DIFFERENCE									
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%							
MBHE 1	114,000	43	72.9%	45	76.3%	3.4%							
MBHE 2	168,700	41	69.5%	42	71.2%	1.7%							
MBHE 3	246,200	38	64.4%	39	66.1%	1.7%							
MBHE 4	433,200	28	47.5%	31	52.5%	5.0%							

FALL ONSET FLOW CRITERIA MET													
CRITERIA	DIFFERENCE												
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%							
MBHE 1	81,000	34	57.6%	37	62.7%	5.1%							
MBHE 2	119,900	29	49.2%	31	52.5%	3.3%							
MBHE 3	175,000	20	33.9%	22	37.3%	3.4%							
MBHE 4	307,800	13	22.0%	13	22.0%	0.0%							

INTERVENING SIX MONTHS FLOW CRITERIA MET												
CRITERIA	TARGET	BAS	SE .	STRAT	EGY	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%						
MBHE 1	105,000	52	88.1%	54	91.5%	3.4%						
MBHE 2	155,400	45	76.3%	50	84.7%	8.4%						
MBHE 3	226,800	40	67.8%	41	69.5%	1.7%						
MBHE 4	399,000	31	52.5%	32	54.2%	1.7%						

Note: Intervening six months includes June, July, November, December, and the remaining Springtime Onset months that are not used for the 3 consecutive month calculation.

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET											
CRITERIA	TARGET	EGY	DIFFERENCE								
	(AC-FT/mo) # OF MONTHS % # OF MONTHS %										
THRESHOLD	15,000	546	77.1%	595	84.0%	6.9%					

2060 Freshwater Inflows to Matagorda Bay

	SPRINGTIME ONSET FLOW CRITERIA MET												
CRITERIA	TARGET	BAS	SE	STRAT	EGY	DIFFERENCE							
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%							
MBHE 1	114,000	48	81.4%	50	84.7%	3.3%							
MBHE 2	168,700	39	66.1%	44	74.6%	8.5%							
MBHE 3	246,200	35	59.3%	37	62.7%	3.4%							
MBHE 4	433,200	22	37.3%	25	42.4%	5.1%							

	FALL ONSET FLOW CRITERIA MET												
CRITERIA	CRITERIA TARGET BASE STRATEGY												
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%							
MBHE 1	81,000	38	64.4%	42	71.2%	6.8%							
MBHE 2	119,900	31	52.5%	33	55.9%	3.4%							
MBHE 3	175,000	19	32.2%	23	39.0%	6.8%							
MBHE 4	307,800	11	18.6%	13	22.0%	3.4%							

	INTERVENING SIX MONTHS FLOW CRITERIA MET												
CRITERIA	STRAT	DIFFERENCE											
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%							
MBHE 1	105,000	53	89.8%	59	100.0%	10.2%							
MBHE 2	155,400	46	78.0%	54	91.5%	13.6%							
MBHE 3	226,800	39	66.1%	44	74.6%	8.5%							
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%							

N	NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET											
CRITERIA TARGET BASE STRATEGY DIFFER												
	(AC-FT/mo) # OF MONTHS % # OF MONTHS %											
THRESHOLD	THRESHOLD 15,000 540 76.3% 594 83.9% 7.6%											

2010			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
CP K10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	84.7%	93.2%	8.5%	30,252	76.3%	83.1%	6.8%	51,527	62.7%	64.4%	1.7%
	FEB	16,828	89.8%	98.3%	8.5%	33,156	79.7%	79.7%	0.0%	50,317	66.1%	62.7%	-3.4%
	MAR	12,543	96.6%	100.0%	3.4%	32,650	88.1%	81.4%	-6.7%	63,701	42.4%	54.2%	11.8%
	APR	16,066	84.7%	86.4%	1.7%	33,382	64.4%	61.0%	-3.4%	60,159	42.4%	52.5%	10.1%
	MAY	18,692	81.4%	88.1%	6.7%	60,565	54.2%	62.7%	8.5%	85,898	47.5%	62.7%	15.2%
	JUN	22,076	71.2%	67.8%	-3.4%	58,552	47.5%	52.5%	5.0%	89,970	39.0%	44.1%	5.1%
	JUL	13,035	52.5%	91.5%	39.0%	35,478	39.0%	32.2%	-6.8%	55,708	28.8%	32.2%	3.4%
	AUG	6,579	71.2%	100.0%	28.8%	19,307	37.3%	39.0%	1.7%	32,097	25.4%	30.5%	5.1%
	SEP	11,187	69.5%	78.0%	8.5%	24,397	59.3%	57.6%	-1.7%	36,714	57.6%	45.8%	-11.8%
	ОСТ	9,039	88.1%	100.0%	11.9%	22,136	74.6%	79.7%	5.1%	46,054	54.2%	55.9%	1.7%
	NOV	10,294	94.9%	100.0%	5.1%	28,919	76.3%	83.1%	6.8%	45,461	62.7%	54.2%	-8.5%
	DEC	12,420	98.3%	100.0%	1.7%	28,899	81.4%	84.7%	3.3%	45,870	61.0%	72.9%	11.9%

2010			SUBSISTE	NCE FLOWS		BASE FLOWS - DRY CONDITIONS				BASE FLOWS - AVERAGE CONDITIONS			
CP K20000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Wharton Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
ł	JAN	19,369	84.7%	91.5%	6.8%	30,252	78.0%	83.1%	5.1%	51,527	54.2%	59.3%	5.1%
ļ	FEB	16,828	89.8%	98.3%	8.5%	33,156	76.3%	83.1%	6.8%	50,317	59.3%	61.0%	1.7%
	MAR	12,543	98.3%	100.0%	1.7%	32,650	93.2%	84.7%	-8.5%	63,701	44.1%	54.2%	10.2%
	APR	16,066	96.6%	100.0%	3.4%	33,382	71.2%	71.2%	0.0%	60,159	47.5%	54.2%	6.8%
	MAY	18,692	93.2%	100.0%	6.8%	60,565	59.3%	66.1%	6.8%	85,898	49.2%	62.7%	13.6%
	JUN	22,076	88.1%	98.3%	10.2%	58,552	57.6%	54.2%	-3.4%	89,970	40.7%	47.5%	6.8%
	JUL	13,035	94.9%	98.3%	3.4%	35,478	40.7%	72.9%	32.2%	55,708	30.5%	32.2%	1.7%
	AUG	6,579	96.6%	100.0%	3.4%	19,307	64.4%	94.9%	30.5%	32,097	32.2%	66.1%	33.9%
	SEP	11,187	91.5%	100.0%	8.5%	24,397	62.7%	83.1%	20.3%	36,714	57.6%	52.5%	-5.1%
	ОСТ	9,039	91.5%	100.0%	8.5%	22,136	76.3%	84.7%	8.5%	46,054	54.2%	52.5%	-1.7%
	NOV	10,294	96.6%	100.0%	3.4%	28,919	76.3%	83.1%	6.8%	45,461	54.2%	49.2%	-5.1%
ł	DEC	12,420	96.6%	100.0%	3.4%	28,899	81.4%	84.7%	3.4%	45,870	59.3%	64.4%	5.1%

2010			SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	E FLOWS - AV	ERAGE COND	DITIONS
CP J10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Colorado Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	20,906	81.4%	89.8%	8.5%	29,944	72.9%	81.4%	8.5%	50,912	44.1%	50.8%	6.8%
	FEB	20,826	83.1%	89.8%	6.8%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	57.6%	3.4%
	MAR	23,058	98.3%	100.0%	1.7%	32,281	88.1%	78.0%	-10.2%	62,717	42.4%	47.5%	5.1%
	APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	98.3%	22.0%	58,136	49.2%	52.5%	3.4%
	MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	94.9%	16.9%	80,918	57.6%	79.7%	22.0%
	JUN	31,775	98.3%	100.0%	1.7%	57,540	83.1%	98.3%	15.3%	85,686	57.6%	78.0%	20.3%
	JUL	21,029	98.3%	100.0%	1.7%	35,048	91.5%	100.0%	8.5%	55,031	50.8%	94.9%	44.1%
	AUG	11,683	98.3%	100.0%	1.7%	19,061	98.3%	100.0%	1.7%	31,728	83.1%	98.3%	15.3%
	SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	100.0%	5.1%	36,298	74.6%	94.9%	20.3%
	ОСТ	11,683	98.3%	100.0%	1.7%	21,890	76.3%	100.0%	23.7%	45,562	61.0%	57.6%	-3.4%
	NOV	12,020	89.8%	100.0%	10.2%	28,562	61.0%	74.6%	13.6%	44,926	47.5%	45.8%	-1.7%
	DEC	18,508	84.7%	96.6%	11.9%	28,530	76.3%	81.4%	5.1%	45,316	49.2%	50.8%	1.7%

2010			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP J30000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Bastrop Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	12,789	83.1%	100.0%	16.9%	19,246	67.8%	89.8%	22.0%	26,624	50.8%	64.4%	13.6%
	FEB	15,217	83.1%	94.9%	11.8%	17,605	76.3%	89.8%	13.5%	27,602	61.0%	72.9%	11.9%
	MAR	16,848	96.6%	100.0%	3.4%	16,848	96.6%	100.0%	3.4%	30,559	79.7%	86.4%	6.7%
	APR	11,127	98.3%	100.0%	1.7%	17,078	98.3%	100.0%	1.7%	37,785	55.9%	84.7%	28.8%
	MAY	16,909	98.3%	100.0%	1.7%	35,601	89.8%	91.5%	1.7%	50,666	81.4%	91.5%	10.1%
	JUN	12,020	98.3%	100.0%	1.7%	24,873	98.3%	100.0%	1.7%	43,617	88.1%	98.3%	10.2%
	JUL	8,424	98.3%	100.0%	1.7%	21,336	93.2%	100.0%	6.8%	37,507	78.0%	96.6%	18.6%
	AUG	7,563	98.3%	100.0%	1.7%	11,929	96.6%	100.0%	3.4%	23,427	96.6%	100.0%	3.4%
	SEP	7,319	98.3%	100.0%	1.7%	14,043	94.9%	100.0%	5.1%	25,170	81.4%	96.6%	15.2%
	OCT	7,809	98.3%	100.0%	1.7%	15,064	88.1%	100.0%	11.9%	26,624	64.4%	91.5%	27.1%
	NOV	10,711	88.1%	100.0%	11.9%	16,840	67.8%	98.3%	30.5%	25,230	49.2%	69.5%	20.3%
	DEC	11,437	89.8%	100.0%	10.2%	19,123	72.9%	88.1%	15.2%	27,669	50.8%	66.1%	15.3%

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP K10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	86.4%	100.0%	13.6%	30,252	78.0%	91.5%	13.5%	51,527	64.4%	72.9%	8.5%
	FEB	16,828	91.5%	100.0%	8.5%	33,156	81.4%	91.5%	10.1%	50,317	67.8%	74.6%	6.8%
	MAR	12,543	98.3%	100.0%	1.7%	32,650	89.8%	88.1%	-1.7%	63,701	44.1%	49.2%	5.1%
	APR	16,066	86.4%	96.6%	10.2%	33,382	66.1%	72.9%	6.8%	60,159	44.1%	49.2%	5.1%
	MAY	18,692	81.4%	91.5%	10.1%	60,565	54.2%	59.3%	5.1%	85,898	47.5%	50.8%	3.3%
	JUN	22,076	71.2%	78.0%	6.8%	58,552	47.5%	52.5%	5.0%	89,970	39.0%	42.4%	3.4%
	JUL	13,035	52.5%	76.3%	23.8%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	32.2%	3.4%
	AUG	6,579	72.9%	100.0%	27.1%	19,307	39.0%	47.5%	8.5%	32,097	27.1%	37.3%	10.2%
	SEP	11,187	71.2%	93.2%	22.0%	24,397	61.0%	66.1%	5.1%	36,714	59.3%	59.3%	0.0%
	ОСТ	9,039	89.8%	100.0%	10.2%	22,136	76.3%	88.1%	11.8%	46,054	55.9%	62.7%	6.8%
	NOV	10,294	96.6%	100.0%	3.4%	28,919	78.0%	88.1%	10.1%	45,461	64.4%	71.2%	6.8%
	DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	93.2%	10.1%	45,870	62.7%	78.0%	15.3%

2060			SUBSISTE	NCE FLOWS		B/	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	ITIONS
CP K20000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Wharton Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
ļ	JAN	19,369	84.7%	100.0%	15.3%	30,252	78.0%	91.5%	13.6%	51,527	54.2%	67.8%	13.6%
ļ	FEB	16,828	89.8%	100.0%	10.2%	33,156	76.3%	86.4%	10.2%	50,317	59.3%	67.8%	8.5%
	MAR	12,543	98.3%	100.0%	1.7%	32,650	93.2%	91.5%	-1.7%	63,701	44.1%	50.8%	6.8%
ļ	APR	16,066	96.6%	100.0%	3.4%	33,382	71.2%	78.0%	6.8%	60,159	47.5%	49.2%	1.7%
	MAY	18,692	93.2%	100.0%	6.8%	60,565	59.3%	64.4%	5.1%	85,898	49.2%	52.5%	3.4%
ļ	JUN	22,076	88.1%	96.6%	8.5%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	45.8%	5.1%
	JUL	13,035	94.9%	98.3%	3.4%	35,478	40.7%	49.2%	8.5%	55,708	30.5%	32.2%	1.7%
	AUG	6,579	96.6%	100.0%	3.4%	19,307	64.4%	84.7%	20.3%	32,097	32.2%	44.1%	11.9%
ļ	SEP	11,187	91.5%	100.0%	8.5%	24,397	62.7%	79.7%	16.9%	36,714	57.6%	62.7%	5.1%
	OCT	9,039	91.5%	100.0%	8.5%	22,136	76.3%	88.1%	11.9%	46,054	54.2%	61.0%	6.8%
ļ	NOV	10,294	96.6%	100.0%	3.4%	28,919	76.3%	88.1%	11.9%	45,461	54.2%	66.1%	11.9%
ł	DEC	12,420	96.6%	100.0%	3.4%	28,899	81.4%	93.2%	11.9%	45,870	59.3%	76.3%	16.9%

2060 CF Col

2060		SUBSISTENCE FLOWS				BASE FLOWS - DRY CONDITIONS				BASE FLOWS - AVERAGE CONDITIONS			
J10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
rado Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	20,906	81.4%	100.0%	18.6%	29,944	72.9%	86.4%	13.6%	50,912	44.1%	62.7%	18.6%
	FEB	20,826	83.1%	98.3%	15.3%	32,767	74.6%	84.7%	10.2%	49,706	54.2%	69.5%	15.3%
	MAR	23,058	98.3%	100.0%	1.7%	32,281	88.1%	86.4%	-1.7%	62,717	42.4%	44.1%	1.7%
	APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	93.2%	16.9%	58,136	49.2%	49.2%	0.0%
	MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	93.2%	15.3%	80,918	57.6%	66.1%	8.5%
	JUN	31,775	98.3%	100.0%	1.7%	57,540	83.1%	94.9%	11.9%	85,686	57.6%	66.1%	8.5%
	JUL	21,029	98.3%	100.0%	1.7%	35,048	91.5%	96.6%	5.1%	55,031	50.8%	71.2%	20.3%
	AUG	11,683	98.3%	100.0%	1.7%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	91.5%	8.5%
	SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	100.0%	5.1%	36,298	74.6%	91.5%	16.9%
	OCT	11,683	98.3%	100.0%	1.7%	21,890	76.3%	98.3%	22.0%	45,562	61.0%	64.4%	3.4%
	NOV	12,020	89.8%	100.0%	10.2%	28,562	61.0%	84.7%	23.7%	44,926	47.5%	57.6%	10.2%
	DEC	18,508	84.7%	98.3%	13.6%	28,530	76.3%	91.5%	15.3%	45,316	49.2%	64.4%	15.3%

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP J30000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Bastrop Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	12,789	84.7%	100.0%	15.3%	19,246	69.5%	98.3%	28.8%	26,624	52.5%	86.4%	33.9%
	FEB	15,217	84.7%	100.0%	15.3%	17,605	78.0%	100.0%	22.0%	27,602	62.7%	83.1%	20.4%
	MAR	16,848	98.3%	100.0%	1.7%	16,848	98.3%	100.0%	1.7%	30,559	81.4%	88.1%	6.7%
	APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	84.7%	27.1%
	MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	93.2%	1.7%	50,666	81.4%	88.1%	6.7%
	JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	94.9%	5.1%
	JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	100.0%	5.1%	37,507	79.7%	86.4%	6.7%
	AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	100.0%	1.7%	23,427	98.3%	100.0%	1.7%
	SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	100.0%	3.4%	25,170	81.4%	94.9%	13.5%
	OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	100.0%	10.2%	26,624	66.1%	88.1%	22.0%
	NOV	10,711	89.8%	100.0%	10.2%	16,840	69.5%	100.0%	30.5%	25,230	50.8%	79.7%	28.9%
	DEC	11,437	91.5%	100.0%	8.5%	19,123	74.6%	96.6%	22.0%	27,669	52.5%	81.4%	28.9%

2060 Freshwater Inflows to Matagorda Bay

SPRINGTIME ONSET FLOW CRITERIA MET												
CRITERIA	TARGET	BAS	SE	STRAT	TEGY	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%						
MBHE 1	114,000	48	81.4%	48	81.4%	0.0%						
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%						
MBHE 3	246,200	35	59.3%	35	59.3%	0.0%						
MBHE 4	433,200	22	37.3%	20	33.9%	-3.4%						

FALL ONSET FLOW CRITERIA MET												
CRITERIA	TARGET	BAS	SE	STRAT	ΓEGY	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%						
MBHE 1	81,000	38	38	64.4%	0.0%							
MBHE 2	119,900	31	52.5%	31	52.5%	0.0%						
MBHE 3	19	32.2%	17	28.8%	-3.4%							
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%						

INTERVENING SIX MONTHS FLOW CRITERIA MET												
CRITERIA	TARGET	BAS	SE	STRAT	ſEGY	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%						
MBHE 1	105,000	53	89.8%	53	89.8%	0.0%						
MBHE 2	155,400	46	78.0%	46	78.0%	0.0%						
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%						
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%						

NU	IMBER OF	MONTHS TH	IAT THRE	SHOLD LEVE	EL IS MET							
CRITERIA TARGET BASE STRATEGY DIFFEREN												
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%						
THRESHOLD	15,000	540	76.3%	540	76.3%	0.0%						

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AVI	ERAGE COND	DITIONS
CP K10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	86.4%	86.4%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	64.4%	64.4%	0.0%
	FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
	MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
	APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	66.1%	0.0%	60,159	44.1%	44.1%	0.0%
	MAY	18,692	81.4%	81.4%	0.0%	60,565	54.2%	54.2%	0.0%	85,898	47.5%	47.5%	0.0%
	JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
	JUL	13,035	52.5%	52.5%	0.0%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
	AUG	6,579	72.9%	72.9%	0.0%	19,307	39.0%	39.0%	0.0%	32,097	27.1%	27.1%	0.0%
	SEP	11,187	71.2%	71.2%	0.0%	24,397	61.0%	61.0%	0.0%	36,714	59.3%	59.3%	0.0%
	ОСТ	9,039	89.8%	89.8%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	55.9%	55.9%	0.0%
	NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	78.0%	0.0%	45,461	64.4%	64.4%	0.0%
	DEC	12,420	100.0%	100.0%	0.0%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	62.7%	0.0%

CP	K20000

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS				
CP K20000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	
Wharton Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
	JAN	19,369	84.7%	84.7%	0.0%	30,252	78.0%	78.0%	0.0%	51,527	54.2%	54.2%	0.0%	
	FEB	16,828	89.8%	89.8%	0.0%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	59.3%	0.0%	
	MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	93.2%	0.0%	63,701	44.1%	44.1%	0.0%	
	APR	16,066	96.6%	96.6%	0.0%	33,382	71.2%	71.2%	0.0%	60,159	47.5%	47.5%	0.0%	
	MAY	18,692	93.2%	93.2%	0.0%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%	
	JUN	22,076	88.1%	88.1%	0.0%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	40.7%	0.0%	
	JUL	13,035	94.9%	94.9%	0.0%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%	
	AUG	6,579	96.6%	96.6%	0.0%	19,307	64.4%	64.4%	0.0%	32,097	32.2%	32.2%	0.0%	
	SEP	11,187	91.5%	91.5%	0.0%	24,397	62.7%	62.7%	0.0%	36,714	57.6%	57.6%	0.0%	
	OCT	9,039	91.5%	91.5%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	54.2%	54.2%	0.0%	
	NOV	10,294	96.6%	96.6%	0.0%	28,919	76.3%	76.3%	0.0%	45,461	54.2%	54.2%	0.0%	
	DEC	12,420	96.6%	96.6%	0.0%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	59.3%	0.0%	

2060			SUBSISTE	NCE FLOWS		BA	ASE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
CP J10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Colorado Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	72.9%	0.0%	50,912	44.1%	44.1%	0.0%
	FEB	20,826	83.1%	83.1%	0.0%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	54.2%	0.0%
	MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	88.1%	0.0%	62,717	42.4%	42.4%	0.0%
	APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	76.3%	0.0%	58,136	49.2%	49.2%	0.0%
	MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	78.0%	0.0%	80,918	57.6%	57.6%	0.0%
	JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	83.1%	0.0%	85,686	57.6%	57.6%	0.0%
	JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	91.5%	0.0%	55,031	50.8%	50.8%	0.0%
	AUG	11,683	98.3%	98.3%	0.0%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	83.1%	0.0%
	SEP	16,602	98.3%	98.3%	0.0%	24,099	94.9%	94.9%	0.0%	36,298	74.6%	74.6%	0.0%
	ОСТ	11,683	98.3%	98.3%	0.0%	21,890	76.3%	76.3%	0.0%	45,562	61.0%	61.0%	0.0%
	NOV	12,020	89.8%	89.8%	0.0%	28,562	61.0%	61.0%	0.0%	44,926	47.5%	47.5%	0.0%
	DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	76.3%	0.0%	45,316	49.2%	49.2%	0.0%

:	2060
СР	J3000

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS				
CP J30000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	
Bastrop Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
	JAN	12,789	84.7%	84.7%	0.0%	19,246	69.5%	69.5%	0.0%	26,624	52.5%	52.5%	0.0%	
	FEB	15,217	84.7%	84.7%	0.0%	17,605	78.0%	78.0%	0.0%	27,602	62.7%	62.7%	0.0%	
	MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	81.4%	0.0%	
	APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	57.6%	0.0%	
	MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%	
	JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	89.8%	0.0%	
	JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	79.7%	0.0%	
	AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	98.3%	0.0%	23,427	98.3%	98.3%	0.0%	
	SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	96.6%	0.0%	25,170	81.4%	81.4%	0.0%	
	OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	89.8%	0.0%	26,624	66.1%	66.1%	0.0%	
	NOV	10,711	89.8%	89.8%	0.0%	16,840	69.5%	69.5%	0.0%	25,230	50.8%	50.8%	0.0%	
	DEC	11,437	91.5%	91.5%	0.0%	19,123	74.6%	74.6%	0.0%	27,669	52.5%	52.5%	0.0%	

2060 Freshwate	Inflows to	Matagorda	Bay
----------------	------------	-----------	-----

SPRINGTIME ONSET FLOW CRITERIA MET											
CRITERIA	TARGET	BAS	SE	STRAT	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	114,000	48	81.4%	48	81.4%	0.0%					
MBHE 2	168,700	39	66.1%	39	66.1%	0.0%					
MBHE 3	246,200	35	59.3%	35	59.3%	0.0%					
MBHE 4	433,200	22	37.3%	22	37.3%	0.0%					

FALL ONSET FLOW CRITERIA MET										
CRITERIA	TARGET	BAS	SE	STRAT	TEGY	DIFFERENCE				
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%				
MBHE 1	81,000	38	64.4%	38	64.4%	0.0%				
MBHE 2	119,900	31	52.5%	31	52.5%	0.0%				
MBHE 3	175,000	19	32.2%	19	32.2%	0.0%				
MBHE 4	307,800	11	18.6%	11	18.6%	0.0%				

INTERVENING SIX MONTHS FLOW CRITERIA MET											
CRITERIA	TARGET	BAS	SE	STRAT	DIFFERENCE						
	(AC-FT)	# OF YEARS	%	# OF YEARS	%	%					
MBHE 1	105,000	53	89.8%	53	89.8%	0.0%					
MBHE 2	155,400	46	78.0%	46	78.0%	0.0%					
MBHE 3	226,800	39	66.1%	39	66.1%	0.0%					
MBHE 4	399,000	32	54.2%	32	54.2%	0.0%					

NUMBER OF MONTHS THAT THRESHOLD LEVEL IS MET										
CRITERIA	TARGET	BAS	STRAT	DIFFERENCE						
	(AC-FT/mo)	# OF MONTHS	%	# OF MONTHS	%	%				
THRESHOLD	15,000	540	76.3%	545	77.0%	0.7%				

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE	FLOWS - AV	ERAGE COND	DITIONS
CP K10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Matagorda Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	19,369	86.4%	89.8%	3.4%	30,252	78.0%	81.4%	3.4%	51,527	64.4%	64.4%	0.0%
	FEB	16,828	91.5%	91.5%	0.0%	33,156	81.4%	81.4%	0.0%	50,317	67.8%	67.8%	0.0%
	MAR	12,543	98.3%	98.3%	0.0%	32,650	89.8%	89.8%	0.0%	63,701	44.1%	44.1%	0.0%
	APR	16,066	86.4%	86.4%	0.0%	33,382	66.1%	67.8%	1.7%	60,159	44.1%	45.8%	1.7%
	MAY	18,692	81.4%	81.4%	0.0%	60,565	54.2%	55.9%	1.7%	85,898	47.5%	47.5%	0.0%
	JUN	22,076	71.2%	71.2%	0.0%	58,552	47.5%	47.5%	0.0%	89,970	39.0%	39.0%	0.0%
	JUL	13,035	52.5%	54.2%	1.7%	35,478	39.0%	39.0%	0.0%	55,708	28.8%	28.8%	0.0%
	AUG	6,579	72.9%	67.8%	-5.1%	19,307	39.0%	39.0%	0.0%	32,097	27.1%	32.2%	5.1%
	SEP	11,187	71.2%	72.9%	1.7%	24,397	61.0%	61.0%	0.0%	36,714	59.3%	59.3%	0.0%
	ОСТ	9,039	89.8%	89.8%	0.0%	22,136	76.3%	76.3%	0.0%	46,054	55.9%	57.6%	1.7%
	NOV	10,294	96.6%	96.6%	0.0%	28,919	78.0%	83.1%	5.1%	45,461	64.4%	64.4%	0.0%
	DEC	12,420	100.0%	98.3%	-1.7%	28,899	83.1%	83.1%	0.0%	45,870	62.7%	66.1%	3.4%

2060			SUBSISTE	NCE FLOWS		BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS				
CP K20000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	
Wharton Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	
	JAN	19,369	84.7%	88.1%	3.4%	30,252	78.0%	81.4%	3.4%	51,527	54.2%	57.6%	3.4%	
	FEB	16,828	89.8%	91.5%	1.7%	33,156	76.3%	76.3%	0.0%	50,317	59.3%	61.0%	1.7%	
	MAR	12,543	98.3%	98.3%	0.0%	32,650	93.2%	89.8%	-3.4%	63,701	44.1%	44.1%	0.0%	
	APR	16,066	96.6%	94.9%	-1.7%	33,382	71.2%	72.9%	1.7%	60,159	47.5%	47.5%	0.0%	
	MAY	18,692	93.2%	94.9%	1.7%	60,565	59.3%	59.3%	0.0%	85,898	49.2%	49.2%	0.0%	
	JUN	22,076	88.1%	88.1%	0.0%	58,552	57.6%	57.6%	0.0%	89,970	40.7%	42.4%	1.7%	
	JUL	13,035	94.9%	96.6%	1.7%	35,478	40.7%	40.7%	0.0%	55,708	30.5%	30.5%	0.0%	
	AUG	6,579	96.6%	96.6%	0.0%	19,307	64.4%	66.1%	1.7%	32,097	32.2%	37.3%	5.1%	
	SEP	11,187	91.5%	91.5%	0.0%	24,397	62.7%	62.7%	0.0%	36,714	57.6%	57.6%	0.0%	
	OCT	9,039	91.5%	91.5%	0.0%	22,136	76.3%	74.6%	-1.7%	46,054	54.2%	55.9%	1.7%	
	NOV	10,294	96.6%	96.6%	0.0%	28,919	76.3%	78.0%	1.7%	45,461	54.2%	54.2%	0.0%	
	DEC	12,420	96.6%	98.3%	1.7%	28,899	81.4%	81.4%	0.0%	45,870	59.3%	61.0%	1.7%	

2060		SUBSISTENCE FLOWS				BA	SE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP J10000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Colorado Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	20,906	81.4%	81.4%	0.0%	29,944	72.9%	76.3%	3.4%	50,912	44.1%	45.8%	1.7%
	FEB	20,826	83.1%	84.7%	1.7%	32,767	74.6%	74.6%	0.0%	49,706	54.2%	55.9%	1.7%
	MAR	23,058	98.3%	98.3%	0.0%	32,281	88.1%	84.7%	-3.4%	62,717	42.4%	42.4%	0.0%
	APR	17,792	100.0%	100.0%	0.0%	32,965	76.3%	79.7%	3.4%	58,136	49.2%	49.2%	0.0%
	MAY	26,132	100.0%	100.0%	0.0%	59,397	78.0%	79.7%	1.7%	80,918	57.6%	59.3%	1.7%
	JUN	31,775	98.3%	98.3%	0.0%	57,540	83.1%	83.1%	0.0%	85,686	57.6%	59.3%	1.7%
	JUL	21,029	98.3%	98.3%	0.0%	35,048	91.5%	93.2%	1.7%	55,031	50.8%	52.5%	1.7%
	AUG	11,683	98.3%	100.0%	1.7%	19,061	98.3%	98.3%	0.0%	31,728	83.1%	84.7%	1.7%
	SEP	16,602	98.3%	100.0%	1.7%	24,099	94.9%	94.9%	0.0%	36,298	74.6%	78.0%	3.4%
	OCT	11,683	98.3%	98.3%	0.0%	21,890	76.3%	78.0%	1.7%	45,562	61.0%	62.7%	1.7%
	NOV	12,020	89.8%	91.5%	1.7%	28,562	61.0%	69.5%	8.5%	44,926	47.5%	49.2%	1.7%
	DEC	18,508	84.7%	84.7%	0.0%	28,530	76.3%	79.7%	3.4%	45,316	49.2%	49.2%	0.0%

2060		SUBSISTENCE FLOWS				BA	ASE FLOWS -	DRY CONDITI	ONS	BASE FLOWS - AVERAGE CONDITIONS			
CP J30000	MONTH	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE	FLOW	BASE	STRATEGY	DIFFERENCE
Bastrop Co.		(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%	(AC-FT/MO)	% TIME MET	% TIME MET	%
	JAN	12,789	84.7%	88.1%	3.4%	19,246	69.5%	74.6%	5.1%	26,624	52.5%	55.9%	3.4%
	FEB	15,217	84.7%	84.7%	0.0%	17,605	78.0%	81.4%	3.4%	27,602	62.7%	66.1%	3.4%
	MAR	16,848	98.3%	98.3%	0.0%	16,848	98.3%	98.3%	0.0%	30,559	81.4%	84.7%	3.4%
	APR	11,127	100.0%	100.0%	0.0%	17,078	100.0%	100.0%	0.0%	37,785	57.6%	61.0%	3.4%
	MAY	16,909	100.0%	100.0%	0.0%	35,601	91.5%	91.5%	0.0%	50,666	81.4%	81.4%	0.0%
	JUN	12,020	100.0%	100.0%	0.0%	24,873	100.0%	100.0%	0.0%	43,617	89.8%	89.8%	0.0%
	JUL	8,424	100.0%	100.0%	0.0%	21,336	94.9%	94.9%	0.0%	37,507	79.7%	83.1%	3.4%
	AUG	7,563	100.0%	100.0%	0.0%	11,929	98.3%	100.0%	1.7%	23,427	98.3%	98.3%	0.0%
	SEP	7,319	100.0%	100.0%	0.0%	14,043	96.6%	98.3%	1.7%	25,170	81.4%	83.1%	1.7%
	OCT	7,809	100.0%	100.0%	0.0%	15,064	89.8%	89.8%	0.0%	26,624	66.1%	69.5%	3.4%
	NOV	10,711	89.8%	91.5%	1.7%	16,840	69.5%	72.9%	3.4%	25,230	50.8%	52.5%	1.7%
	DEC	11,437	91.5%	88.1%	-3.4%	19,123	74.6%	78.0%	3.4%	27,669	52.5%	55.9%	3.4%
							•						
2016 LCRWPG WATER PLAN

APPENDIX 5F

TWDB DB17 REPORTS

WUG Second Tier Needs Summary

WUG Second Tier Needs

WUG Unmet Needs Summary

WUG Unmet Needs

WUG Recommended Water Management Strategies

Recommended Projects Associated with Water Management Strategies

WUG Alternative Water Management Strategies

Alternative Projects Associated with Water Management Strategies

WUG Management Supply Factors

REGION K

	2020	2030	2040	2050	2060	2070
MUNICIPAL	959	6,211	9,922	17,295	26,925	42,579
COUNTY-OTHER	151	189	249	1,043	1,893	2,787
MANUFACTURING	570	692	810	913	1,059	1,216
MINING	4,260	8,618	9,247	10,219	11,653	13,664
STEAM ELECTRIC POWER	25,363	25,377	25,401	25,431	32,712	44,127
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	214,375	178,442	141,153	107,636	78,682	54,428

*Second-tier needs are WUG split needs adjusted to include the implementation of recommended demand reduction and direct reuse water management strategies.

THIS PAGE LEFT BLANK INTENTIONALLY

REGION K	WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)									
	2020	2030	2040	2050	2060	2070				
BASTROP COUNTY										
BRAZOS BASIN										
AQUA WSC	0	0	0	0	0	0				
LEE COUNTY WSC	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MINING	173	409	450	496	545	600				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
COLORADO BASIN										
AQUA WSC	554	2,015	3,927	7,115	12,233	19,000				
BASTROP	0	0	14	309	765	2,064				
BASTROP COUNTY WCID #2	0	0	0	0	19	542				
CREEDMOOR-MAHA WSC	0	0	0	0	0	0				
ELGIN	277	484	694	1,116	1,880	2,899				
LEE COUNTY WSC	0	0	0	0	0	0				
POLONIA WSC	0	0	0	0	0	0				
SMITHVILLE	0	0	0	0	0	86				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	55	87	120	151	174	199				
MINING	449	3,947	4,556	5,235	5,967	6,777				
STEAM ELECTRIC POWER	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
GUADALUPE BASIN										
AQUA WSC	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				
MINING	110	306	341	379	420	466				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
BLANCO COUNTY										
COLORADO BASIN										
JOHNSON CITY	0	0	19	35	46	53				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
GUADALUPE BASIN										
BLANCO	0	0	0	0	0	0				
CANYON LAKE WATER SERVICE COMPANY	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
BURNET COUNTY										
BRAZOS BASIN										
BERTRAM	0	0	10	30	41	45				
BURNET	0	0	0	0	0	0				
CHISHOLM TRAIL SUD	0	0	0	0	0	0				

REGION K		WUG SEC	OND-TIER NEE	DS (ACRE-FEET	PER YEAR)	
	2020	2030	2040	2050	2060	2070
BURNET COUNTY						
BRAZOS BASIN						
KEMPNER WSC	0	0	0	0	0	0
COUNTY-OTHER	0	0	0	0	0	60
MINING	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0
COLORADO BASIN						
BURNET	0	0	0	0	0	0
COTTONWOOD SHORES	0	0	0	0	0	0
GRANITE SHOALS	0	0	0	89	173	249
HORSESHOE BAY	0	0	0	0	0	0
KINGSLAND WSC	0	0	0	0	0	0
MARBLE FALLS	0	0	0	0	0	0
MEADOWLAKES	0	0	0	0	0	0
COUNTY-OTHER	0	0	0	0	0	0
MANUFACTURING	0	0	0	0	0	0
MINING	1,011	1,703	2,428	3,085	5,841	4,703
	0	0	0	0	0	0
	0	0	0	0	0	0
BRAZOS-COLORADO BASIN	0	0	0	0	0	0
COUNTY OTHER	0	0	0	0	0	0
MANUFACTURING	0	0	0	0	0	0
MINING	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	11.086	8.521	5.933	3.653	1.655	0
COLORADO BASIN	,	- /-		- ,	,	
COLUMBUS	0	0	0	0	0	0
EAGLE LAKE	0	0	0	0	0	0
WEIMAR	0	0	0	0	0	0
COUNTY-OTHER	0	0	0	3	31	61
MANUFACTURING	0	0	0	0	0	0
MINING	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	0	0	0	0	0	0
LAVACA BASIN						
WEIMAR	0	0	0	0	0	0
COUNTY-OTHER	0	0	0	0	0	0
MANUFACTURING	0	0	0	0	0	0
MINING	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	13,921	9,842	5,805	2,300	0	0
FAYETTE COUNTY						
COLORADO BASIN						
AQUA WSC	0	0	0	0	0	0
FAYETTE WSC	0	0	0	0	0	0
LA GRANGE	0	0	0	0	0	0
LEE COUNTY WSC	0	ı 0	I 0	I 0	1 0	1 0

REGION K	WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)								
	2020	2030	2040	2050	2060	2070			
FAYETTE COUNTY					I				
COLORADO BASIN									
COUNTY-OTHER	0	12	57	98	138	172			
MINING	1,576	1,176	717	274	0	0			
STEAM ELECTRIC POWER	0	0	0	0	2,614	7,414			
LIVESTOCK	0	0	0	0	0	0			
IRRIGATION	0	0	0	0	0	0			
GUADALUPE BASIN									
FAYETTE WSC	0	0	0	0	0	0			
FLATONIA	0	0	0	0	0	0			
COUNTY-OTHER	0	0	0	0	0	0			
MINING	66	42	13	0	0	0			
LIVESTOCK	0	0	0	0	0	0			
IRRIGATION	0	0	0	0	0	0			
LAVACA BASIN									
FAYETTE WSC	0	0	0	0	0	0			
FLATONIA	0	0	0	0	0	0			
SCHULENBURG	0	0	0	0	0	0			
COUNTY-OTHER	151	177	192	207	222	233			
MANUFACTURING	206	243	279	310	349	391			
MINING	344	274	195	119	40	39			
LIVESTOCK	0	0	0	0	0	0			
IRRIGATION	0	0	0	0	0	0			
GILLESPIE COUNTY									
COLORADO BASIN									
FREDERICKSBURG	0	0	0	0	0	0			
COUNTY-OTHER	0	0	0	0	0	0			
MANUFACTURING	309	362	411	452	536	626			
MINING	0	0	0	0	0	0			
LIVESTOCK	0	0	0	0	0	0			
IRRIGATION	0	0	0	0	0	0			
GUADALUPE BASIN									
COUNTY-OTHER	0	0	0	0	0	0			
LIVESTOCK	0	0	0	0	0	0			
HAYS COUNTY									
COLORADO BASIN									
AUSTIN	0	0	0	0	0	0			
BUDA	0	0	0	226	1,394	2,726			
CIMARRON PARK WATER COMPANY	0	0	0	0	0	0			
DRIPPING SPRINGS	0	0	0	0	0	0			
DRIPPING SPRINGS WSC	0	0	0	0	0	0			
GOFORTH SUD	0	0	0	0	0	0			
MOUNTAIN CITY	0	0	0	0	0	0			
PLUM CREEK WATER COMPANY	0	0	0	0	0	0			
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	0	0	0	0	412	711			
COUNTY-OTHER	0	0	0	735	1,502	2,261			
MANUFACTURING	0	0	0	0	0	0			
MINING	531	761	547	631	840	1,079			
LIVESTOCK	0	0	0	0	0	0			
IRRIGATION	0	0	0	0	0	0			

REGION K WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)								
	2020	2030	2040	2050	2060	2070		
LLANO COUNTY		l .						
COLORADO BASIN								
HORSESHOE BAY	0	0	0	0	0	0		
KINGSLAND WSC	0	0	0	0	0	0		
LLANO	128	123	86	42	25	7		
SUNRISE BEACH VILLAGE	0	0	0	0	0	0		
COUNTY-OTHER	0	0	0	0	0	0		
MANUFACTURING	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
STEAM ELECTRIC POWER	0	0	0	0	0	0		
LIVESTOCK	0	0	0	0	0	0		
IRRIGATION	0	0	0	0	0	0		
MATAGORDA COUNTY								
BRAZOS-COLORADO BASIN								
BAY CITY	0	0	0	0	0	0		
COUNTY-OTHER	0	0	0	0	0	0		
MANUFACTURING	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
LIVESTOCK	0	0	0	0	0	0		
IRRIGATION	48 397	41 244	33 660	26 753	20 594	14 499		
COLORADO BASIN	40,377		55,000	20,735	20,574	11,199		
BAY CITY	0	0	0	0	0	0		
COUNTY OTHER	0	0	0	0	0	0		
MANUFACTURING	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
STEAM ELECTRIC POWER	25 363	25 377	25 401	25 431	25 461	25 483		
LIVESTOCK	25,505	23,377	23,401	25,451	25,401	23,403		
IRRIGATION	8 714	7 539	6 279	5 120	4 083	3 045		
COLOPADO LAVACA BASIN	0,714	1,555	0,277	5,120	4,005	5,015		
	0	0	0	0	0	0		
COUNTY OTHER	0	0	0	0	0	0		
MANUEACTURING	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
LIVESTOCK	0	0	0	0	0	0		
IRRIGATION	58 948	50 547	41 593	33 413	26 109	18 844		
	50,940	50,547	41,575	55,415	20,109	10,044		
MILLS COUNTY								
BRAZOS BASIN				0	0	0		
GOLDIHWAITE	0	0	0	0	0	0		
COUNT F-OTHER	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
LIVESTOCK	0	0	0	0	0	0		
	480	480	480	480	480	460		
COLOKADO BASIN		-	-	-		-		
BROOKESMITH SUD	0	0	0	0	0	0		
GOLDTHWAITE	0	0	0	0	0	0		
COUNTY-OTHER	0	0	0	0	0	0		
MANUFACTURING	0	0	0	0	0	0		
MINING	0	0	0	0	0	0		
	0	0	0	0	0	0		
IKRIGATION	0	0	. 0	0	0	0		

REGION K	WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)									
	2020	2030	2040	2050	2060	2070				
SAN SABA COUNTY										
COLORADO BASIN										
RICHLAND SUD	0	0	0	0	0	0				
SAN SABA	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
TRAVIS COUNTY										
COLORADO BASIN										
AQUA WSC	0	0	0	0	0	0				
AUSTIN	0	0	0	0	0	0				
BARTON CREEK WEST WSC	0	0	0	0	0	0				
BEE CAVE	0	0	0	0	0	0				
BRIARCLIFF	0	0	0	0	0	0				
CEDAR PARK	0	0	0	0	0	0				
CREEDMOOR-MAHA WSC	0	0	9	133	268	400				
ELGIN	0	48	129	222	304	381				
JONESTOWN	0	0	0	0	0	0				
LAGO VISTA	0	0	0	0	0	0				
LAKEWAY	0	132	0	0	0	0				
LEANDER	0	788	2,529	3,340	3,701	4,055				
LOOP 360 WSC	0	0	0	0	0	0				
LOST CREEK MUD	0	0	0	0	0	0				
MANOR	0	0	0	0	72	390				
MANVILLE WSC	0	0	0	0	461	1,435				
MUSTANG RIDGE	0	0	0	0	0	0				
NORTH AUSTIN MUD #1	0	0	0	0	0	0				
NORTHTOWN MUD	0	0	0	0	0	0				
PFLUGERVILLE	0	0	0	2,224	2,855	5,312				
POINT VENTURE	0	0	0	0	19	32				
ROLLINGWOOD	0	255	241	228	216	203				
ROUND ROCK	0	27	82	144	187	223				
SHADY HOLLOW MUD	0	0	0	0	0	0				
SUNSET VALLEY	0	0	0	0	0	0				
THE HILLS	0	0	0	0	0	0				
TRAVIS COUNTY MUD #4	0	0	0	0	0	0				
TRAVIS COUNTY WCID #10	0	1,376	1,329	1,287	1,190	1,181				
TRAVIS COUNTY WCID #17	0	0	0	0	0	0				
TRAVIS COUNTY WCID #18	0	0	0	0	0	0				
TRAVIS COUNTY WCID #19	0	0	0	0	0	0				
TRAVIS COUNTY WCID #20	0	0	0	0	0	0				
VOLENTE	0	9	20	34	47	59				
WELLS BRANCH MUD	0	0	0	0	0	0				
WEST LAKE HILLS	0	954	833	721	617	526				
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	0	0	0	0	0	0				
WILLIAMSON-TRAVIS COUNTY MUD #1	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				

REGION K		WUG SECOND-TIER NEEDS (ACRE-FEET PER YEAR)								
T	2020	2030	2040	2050	2060	2070				
TRAVIS COUNTY	U									
COLORADO BASIN										
MINING	0	0	0	0	0	0				
STEAM ELECTRIC POWER	0	0	0	0	4,543	11,030				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	0	0	0	0	0	0				
GUADALUPE BASIN										
CREEDMOOR-MAHA WSC	0	0	0	0	0	0				
GOFORTH SUD	0	0	0	0	0	0				
MUSTANG RIDGE	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
WHARTON COUNTY										
BRAZOS-COLORADO BASIN										
EAST BERNARD	0	0	0	0	0	0				
WHARTON	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MANUFACTURING	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
STEAM ELECTRIC POWER	0	0	0	0	94	200				
LIVESTOCK	0	0	0	0	0	0				
IRRIGATION	48,964	41,369	33,470	26,349	20,024	13,875				
COLORADO BASIN	I									
EL CAMPO	0	0	0	0	0	0				
WHARTON	0	0	0	0	0	0				
COUNTY-OTHER	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
STEAM ELECTRIC POWER	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
	9,676	6,999	4,397	2,157	211	0				
COLORADO-LAVACA BASIN	0	0	0	0	0					
COUNTY-OTHER	0	0	0	0	0	0				
MINING	0	0	0	0	0	0				
	14 180	11 001	0 536	7 411	5 526	2 705				
	14,189	11,901	9,550	7,411	5,520	3,703				
LAVACA BASIN	0	0	0	0	0	0				
	0	0	0	0	0	0				
ND 4 ZOG D L GDV										
BRAZOS BASIN		0			0					
AUSTIN	0	0	0	0	0	0				
NORTH AUSTIN MUD #1	0	0	0	0	0	0				
WELLS BRANCH MUD	0	0	0	0	0	0				
MNING	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				
LIVESTOCK	0	0	0	0	0	0				

*Second-tier needs are WUG split needs adjusted to include the implementation of recommended demand reduction and direct reuse water management strategies.

THIS PAGE LEFT BLANK INTENTIONALLY

Water User Group (WUG) Unmet Needs Summary

REGION K

	2020	2030	2040	2050	2060	2070
MUNICIPAL	0	0	0	0	0	0
COUNTY-OTHER	0	0	0	0	0	0
MANUFACTURING	0	0	0	0	0	0
MINING	622	4,356	5,006	5,731	6,512	7,377
STEAM ELECTRIC POWER	0	0	0	0	0	0
LIVESTOCK	0	0	0	0	0	0
IRRIGATION	120,822	113,478	102,187	76,539	55,295	27,924

^{*}WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The unmet needs shown in the WUG Unmet Needs Summary report are calculated by first deducting the WUG split's projected demand from the sum of its total existing water supply volume and all associated recommended water management strategy water volumes. If the WUG split has a greater future supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG category level, calculated surpluses are updated to zero so that only the WUGs with unmet needs in the decade are included with the Needs totals. Unmet needs water volumes are shown as absolute values.

THIS PAGE LEFT BLANK INTENTIONALLY

Water User Group (WUG) Unmet Needs

REGION K		WUG U	NMET NEEDS	(ACRE-FEET PEI	R YEAR)	
	2020	2030	2040	2050	2060	2070
BASTROP COUNTY						
BRAZOS BASIN						
MINING	173	409	450	496	545	600
COLORADO BASIN						
MINING	449	3,947	4,556	5,235	5,967	6,777
COLORADO COUNTY						
BRAZOS-COLORADO BASIN						
IRRIGATION	0	0	1,302	755	1,170	0
LAVACA BASIN						
IRRIGATION	0	0	1,195	475	0	0
MATAGORDA COUNTY						
BRAZOS-COLORADO BASIN						
IRRIGATION	29,286	27,777	25,165	19,532	14,562	7,502
COLORADO BASIN						
IRRIGATION	5,273	5,077	4,694	3,738	2,887	1,576
COLORADO-LAVACA BASIN						
IRRIGATION	35,671	34,041	31,096	24,394	18,461	9,750
WHARTON COUNTY						
BRAZOS-COLORADO BASIN						
IRRIGATION	34,013	31,974	27,350	20,281	14,159	7,179
COLORADO BASIN						
IRRIGATION	6,722	5,410	3,593	1,660	149	0
COLORADO-LAVACA BASIN						
IRRIGATION	9,857	9,199	7,792	5,704	3,907	1,917

*WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The unmet needs shown in the WUG Unmet Needs report are calculated by first deducting the WUG split's projected demand from the sum of its total existing water supply volume and all associated recommended water management strategy water volumes. If the WUG split has a greater future supply volume than projected demand in any given decade, this amount is considered a surplus volume. In order to display only unmet needs associated with the WUG split, these surplus volumes are updated to a zero and the unmet needs water volumes are shown as absolute values.

THIS PAGE LEFT BLANK INTENTIONALLY

WUG Entity Primary Region: K

	Water Management Strategy Supplies										
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
AQUA WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	1,549	1,960	2,502	3,248	4,254	5,639	\$50	\$50
AQUA WSC	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	2,500	2,500	4,000	4,000	4,000	4,000	\$259	\$259
AQUA WSC	К	LCRA - PRAIRIE SITE RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIR (2030 DECADE)	0	0	5,000	5,000	10,000	15,000	N/A	\$1414
AQUA WSC	К	MUNICIPAL CONSERVATION - AQUA WSC	DEMAND REDUCTION	704	1,006	1,066	1,235	1,623	2,130	\$352	\$352
AUSTIN	К	CITY OF AUSTIN - AQUIFER STORAGE AND RECOVERY	K TRINITY AQUIFER ASR TRAVIS COUNTY	10,000	25,000	25,000	50,000	50,000	50,000	\$604	\$604
AUSTIN	к	CITY OF AUSTIN - CAPTURE LOCAL INFLOWS TO LADY BIRD LAKE	K COLORADO RUN- OF-RIVER	1,000	1,000	1,000	1,000	1,000	1,000	\$297	\$297
AUSTIN	К	CITY OF AUSTIN - CONSERVATION	DEMAND REDUCTION	22,969	24,559	28,317	31,220	33,822	36,899	\$342	\$342
AUSTIN	К	CITY OF AUSTIN - DIRECT REUSE	K DIRECT REUSE	5,429	10,429	20,429	22,929	25,429	27,929	\$1347	\$1347
AUSTIN	к	CITY OF AUSTIN - INDIRECT POTABLE REUSE THROUGH LADY BIRD LAKE	K COLORADO INDIRECT REUSE	20,000	20,000	20,000	20,000	20,000	20,000	\$180	\$180
AUSTIN	К	CITY OF AUSTIN - LAKE AUSTIN OPERATIONS	K COLORADO RUN- OF-RIVER	2,500	2,500	2,500	2,500	2,500	2,500	\$10	\$10
AUSTIN	К	CITY OF AUSTIN - LAKE LONG ENHANCED STORAGE	K LAKE LONG/RESERVOIR	20,000	20,000	20,000	20,000	20,000	20,000	\$187	\$187
AUSTIN	к	CITY OF AUSTIN - LONGHORN DAM OPERATION IMPROVEMENTS	K COLORADO RUN- OF-RIVER	3,000	3,000	3,000	3,000	3,000	3,000	\$29	\$29
AUSTIN	К	CITY OF AUSTIN - OTHER REUSE	K DIRECT REUSE	1,000	1,000	1,500	2,000	2,500	3,000	\$1022	\$1022
AUSTIN	К	CITY OF AUSTIN - RAINWATER HARVESTING	K RAINWATER HARVESTING	83	828	4,141	8,282	12,423	16,564	\$3487	\$3487
AUSTIN	к	CITY OF AUSTIN RETURN FLOWS	K COLORADO INDIRECT REUSE - CITY OF AUSTIN RETURN FLOWS	19,258	17,749	22,990	22,874	26,759	30,312	\$0	\$0
AUSTIN	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	16,516	19,260	22,206	24,484	26,524	28,937	\$50	\$50
BARTON CREEK WEST WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	65	64	64	63	63	63	\$50	\$50
BARTON CREEK WEST WSC	К	MUNICIPAL CONSERVATION - BARTON CREEK WEST WSC	DEMAND REDUCTION	42	77	108	122	137	152	\$282	\$282
BASTROP	к	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	300	300	300	300	300	0	\$937	N/A
BASTROP	К	DIRECT REUSE - BASTROP	K DIRECT REUSE	0	0	300	600	1,120	1,120	N/A	\$448
BASTROP	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	294	390	517	692	930	1,248	\$50	\$50
BASTROP	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	0	0	2,500	2,500	2,500	N/A	\$2361
BASTROP	К	MUNICIPAL CONSERVATION - BASTROP	DEMAND REDUCTION	195	440	688	1,084	1,459	1,958	\$303	\$303
BASTROP COUNTY WCID #2	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	19	27	38	53	74	102	\$50	\$50
BASTROP COUNTY WCID #2	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	0	0	0	0	550	550	N/A	\$369
BAY CITY	K	DROUGHT MANAGEMENT	DEMAND REDUCTION	568	579	582	591	599	606	\$50	\$50
BAY CITY	К	MUNICIPAL CONSERVATION - BAY CITY	DEMAND REDUCTION	252	199	114	94	95	96	\$336	\$336
BEE CAVE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	355	409	459	516	567	614	\$50	\$50

		Water Management Strategy Supplies									
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
BEE CAVE	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	300	300	600	600	800	800	\$0	\$0
BEE CAVE	К	MUNICIPAL CONSERVATION - BEE CAVE VILLAGE	DEMAND REDUCTION	175	374	608	863	1,136	1,323	\$272	\$272
BERTRAM	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	62	73	83	93	102	109	\$50	\$50
BERTRAM	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - ELLENBURGER-SAN SABA AQUIFER	K ELLENBURGER- SAN SABA AQUIFER BURNET COUNTY	180	180	180	180	180	180	\$1044	\$1044
BERTRAM	К	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	500	884	884	884	884	884	\$952	\$952
BERTRAM	К	MUNICIPAL CONSERVATION - BERTRAM	DEMAND REDUCTION	41	64	91	126	164	204	\$292	\$292
BLANCO	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	55	63	68	71	73	74	\$50	\$50
BLANCO	К	MUNICIPAL CONSERVATION - BLANCO	DEMAND REDUCTION	19	32	28	26	27	27	\$378	\$378
BRIARCLIFF	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	26	30	33	37	40	44	\$50	\$50
BUDA	К	DIRECT REUSE - BUDA	K DIRECT REUSE	2,240	2,240	1,740	1,740	1,740	1,740	\$264	\$264
BUDA	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	177	251	342	456	586	734	\$50	\$50
BUDA	К	EDWARDS / MIDDLE TRINITY ASR	K TRINITY AQUIFER ASR HAYS COUNTY	0	600	600	600	600	600	N/A	\$1291
BUDA	к	HCPUA PIPELINE - REGION K RECOMMENDED	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	667	1,690	2,467	2,467	2,467	N/A	\$1926
BUDA	К	MUNICIPAL CONSERVATION - BUDA	DEMAND REDUCTION	88	206	434	552	709	888	\$374	\$374
BUDA	к	SALINE EDWARDS ASR	K EDWARDS AQUIFER ASR FRESH/BRACKISH TRAVIS COUNTY	0	100	100	100	100	100	N/A	\$2031
BUDA	к	SALINE EDWARDS ASR (SALINE)	K EDWARDS-BFZ AQUIFER SALINE TRAVIS COUNTY	0	400	400	400	400	400	N/A	\$2031
BURNET	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	370	441	500	559	612	658	\$50	\$50
BURNET	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	1,000	2,000	2,000	2,000	2,000	2,000	\$952	\$952
BURNET	К	MUNICIPAL CONSERVATION - BURNET	DEMAND REDUCTION	184	282	405	571	740	917	\$291	\$291
COLUMBUS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	170	175	178	185	191	197	\$50	\$50
COLUMBUS	К	MUNICIPAL CONSERVATION - COLUMBUS	DEMAND REDUCTION	112	206	296	347	404	464	\$282	\$282
COTTONWOOD SHORES	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	45	54	61	68	74	80	\$50	\$50
COTTONWOOD SHORES	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	376	700	700	700	700	700	\$1517	\$1517
COTTONWOOD SHORES	К	MUNICIPAL CONSERVATION - COTTONWOOD SHORES	DEMAND REDUCTION	22	21	20	19	21	23	\$322	\$322
COUNTY-OTHER, BASTROP	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	281	338	413	517	657	845	\$50	\$50
COUNTY-OTHER, BASTROP	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	60	60	60	60	60	0	\$3267	N/A
COUNTY-OTHER, BASTROP	К	MUNICIPAL CONSERVATION - BASTROP COUNTY-OTHER	DEMAND REDUCTION	92	196	344	414	527	677	\$374	\$374
COUNTY-OTHER, BLANCO	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, BLANCO	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	144	166	179	185	190	193	\$50	\$50

Recommended Water User Group (WUG) Water Management Strategies (WMS) Water Management Strategy Supplie

				v	ater Ma	nagemen	it Strateg	gy Suppn	es		
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
COUNTY-OTHER, BLANCO	K	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - ELLENBURGER-SAN SABA AQUIFER	K ELLENBURGER- SAN SABA AQUIFER BLANCO COUNTY	0	0	0	55	55	55	N/A	\$1382
COUNTY-OTHER, BLANCO	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - HICKORY AQUIFER	K HICKORY AQUIFER BLANCO COUNTY	0	0	0	55	55	55	N/A	\$2182
COUNTY-OTHER, BURNET	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, BURNET	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	526	566	550	593	646	711	\$50	\$50
COUNTY-OTHER, BURNET	К	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	2,235	3,813	3,813	3,813	3,813	3,813	\$1308	\$1308
COUNTY-OTHER, BURNET	К	MUNICIPAL CONSERVATION - BURNET COUNTY-OTHER	DEMAND REDUCTION	60	93	83	80	87	94	\$0	\$0
COUNTY-OTHER, COLORADO	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	221	223	223	229	237	245	\$50	\$50
COUNTY-OTHER, COLORADO	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - GULF COAST AQUIFER	K GULF COAST AQUIFER COLORADO COUNTY	226	226	226	226	226	226	\$602	\$602
COUNTY-OTHER, FAYETTE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	186	202	213	225	234	242	\$50	\$50
COUNTY-OTHER, FAYETTE	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - GULF COAST AQUIFER	K GULF COAST AQUIFER FAYETTE COUNTY	639	639	639	639	639	639	\$667	\$667
COUNTY-OTHER, GILLESPIE	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, GILLESPIE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	273	284	295	310	327	343	\$50	\$50
COUNTY-OTHER, HAYS	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, HAYS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	466	554	693	852	987	1,121	\$50	\$50
COUNTY-OTHER, HAYS	К	EDWARDS / MIDDLE TRINITY ASR	K TRINITY AQUIFER ASR HAYS COUNTY	0	200	200	200	200	200	N/A	\$1291
COUNTY-OTHER, HAYS	к	HAYS COUNTY PIPELINE - REGION K RECOMMENDED	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	2,000	2,000	2,000	2,000	2,000	N/A	\$708
COUNTY-OTHER, HAYS	к	SALINE EDWARDS ASR	K EDWARDS AQUIFER ASR FRESH/BRACKISH TRAVIS COUNTY	0	100	100	100	100	100	N/A	\$2031
COUNTY-OTHER, HAYS	к	SALINE EDWARDS ASR (SALINE)	K EDWARDS-BFZ AQUIFER SALINE TRAVIS COUNTY	0	100	100	100	100	100	N/A	\$2031
COUNTY-OTHER, HAYS	L	GBRA - MBWSP - SURFACE WATER W/ ASR (OPTION 3C)	L GUADALUPE RUN- OF-RIVER	0	0	0	0	2,029	7,220	N/A	\$596
COUNTY-OTHER, HAYS	L	TWA REGIONAL CARRIZO AQUIFER DEVELOPMENT	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	0	0	1,169	4,685	4,388	N/A	\$2490
COUNTY-OTHER, HAYS	L	TWA TRINITY AQUIFER DEVELOPMENT	L TRINITY AQUIFER COMAL COUNTY	0	0	0	0	0	1,263	N/A	\$704
COUNTY-OTHER, HAYS	L	VISTA RIDGE PROJECT	G CARRIZO-WILCOX AQUIFER BURLESON COUNTY	3,781	5,000	5,000	5,000	5,000	5,000	\$680	\$611
COUNTY-OTHER, LLANO	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, LLANO	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	31	28	28	28	27	25	\$50	\$50
COUNTY-OTHER, MATAGORDA	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	81	81	81	81	81	83	\$50	\$50
COUNTY-OTHER, MILLS	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, MILLS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	77	77	75	78	81	84	\$50	\$50
COUNTY-OTHER, SAN SABA	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500

Recommended Water User Group (WUG) Water Management Strategies (WMS) Water Management Strategy Supplie

		• · · · · · · · · · · · · · · · · · · ·		V	ater Ma	nagemer	ii Strateg	gy Suppn	es		
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
COUNTY-OTHER, SAN SABA	ĸ	DROUGHT MANAGEMENT	DEMAND REDUCTION	47	48	47	46	47	48	\$50	\$50
COUNTY-OTHER, TRAVIS	К	BRUSH CONTROL	K COLORADO RUN- OF-RIVER	425	425	425	425	425	425	\$500	\$500
COUNTY-OTHER, WHARTON	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	299	306	310	322	333	343	\$50	\$50
CREEDMOOR-MAHA WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	30	34	38	42	46	51	\$50	\$50
CREEDMOOR-MAHA WSC	К	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	400	400	400	400	400	N/A	\$151
CREEDMOOR-MAHA WSC	К	SALINE EDWARDS ASR	K EDWARDS AQUIFER ASR FRESH/BRACKISH TRAVIS COUNTY	0	101	101	101	101	101	N/A	\$2031
CREEDMOOR-MAHA WSC	К	SALINE EDWARDS ASR (SALINE)	K EDWARDS-BFZ AQUIFER SALINE TRAVIS COUNTY	0	199	199	199	199	199	N/A	\$2031
DRIPPING SPRINGS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	96	107	122	141	163	188	\$50	\$50
DRIPPING SPRINGS	К	HAYS COUNTY PIPELINE - REGION K RECOMMENDED	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	0	0	0	134	407	N/A	\$0
DRIPPING SPRINGS	К	MUNICIPAL CONSERVATION - DRIPPING SPRINGS	DEMAND REDUCTION	48	67	98	141	195	262	\$293	\$293
DRIPPING SPRINGS	к	WATER PURCHASE	K HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	0	31	104	198	173	0	N/A	N/A
DRIPPING SPRINGS WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	107	136	172	218	271	330	\$50	\$50
DRIPPING SPRINGS WSC	к	HAYS COUNTY PIPELINE - REGION K RECOMMENDED	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	1,000	1,000	1,000	866	593	N/A	\$708
DRIPPING SPRINGS WSC	К	MUNICIPAL CONSERVATION - DRIPPING SPRINGS WSC	DEMAND REDUCTION	54	124	152	187	232	283	\$313	\$313
EAGLE LAKE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	78	79	79	82	85	87	\$50	\$50
EAST BERNARD	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	57	59	61	63	65	67	\$50	\$50
EAST BERNARD	К	MUNICIPAL CONSERVATION - EAST BERNARD	DEMAND REDUCTION	19	29	42	56	78	97	\$395	\$395
ELGIN	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	233	301	386	500	650	844	\$50	\$50
ELGIN	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	300	300	0	0	0	0	\$667	N/A
ELGIN	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	3,500	3,500	3,500	3,500	3,500	N/A	\$2718
FAYETTE WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	113	125	133	141	148	152	\$50	\$50
FLATONIA	К	DIRECT REUSE - FLATONIA	K DIRECT REUSE	134	149	159	168	176	182	\$821	\$821
FLATONIA	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	51	56	59	63	65	68	\$50	\$50
FLATONIA	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - GULF COAST AQUIFER	K GULF COAST AQUIFER FAYETTE COUNTY	100	100	100	100	100	100	\$2060	\$2060
FLATONIA	К	MUNICIPAL CONSERVATION - FLATONIA	DEMAND REDUCTION	17	29	43	60	84	105	\$356	\$356
FREDERICKSBURG	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	472	499	521	551	580	609	\$50	\$50
FREDERICKSBURG	К	MUNICIPAL CONSERVATION - FREDERICKSBURG	DEMAND REDUCTION	317	599	733	916	1,094	1,301	\$284	\$284
GOLDTHWAITE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	53	53	53	55	57	59	\$50	\$50
GOLDTHWAITE	К	MUNICIPAL CONSERVATION - GOLDTHWAITE	DEMAND REDUCTION	10	13	24	38	54	58	\$449	\$449
GRANITE SHOALS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	33	38	43	48	53	57	\$50	\$50

		Water Management Strategy Supplies									
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
GRANITE SHOALS	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	0	0	250	250	250	N/A	\$151
HORSESHOE BAY	К	DIRECT REUSE - HORSESHOE BAY	K DIRECT REUSE	100	100	100	100	100	100	\$0	\$0
HORSESHOE BAY	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	651	748	810	860	930	994	\$50	\$50
HORSESHOE BAY	К	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	200	550	550	1,050	1,050	N/A	\$151
HORSESHOE BAY	К	MUNICIPAL CONSERVATION - HORSESHOE BAY	DEMAND REDUCTION	264	554	852	1,157	1,501	1,839	\$257	\$257
IRRIGATION, COLORADO	к	CITY OF AUSTIN RETURN FLOWS	K COLORADO INDIRECT REUSE - CITY OF AUSTIN RETURN FLOWS	0	0	466	336	485	0	N/A	N/A
IRRIGATION, COLORADO	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	29,542	28,746	27,974	27,221	26,489	25,776	\$163	\$163
IRRIGATION, COLORADO	К	IRRIGATION CONSERVATION - ON FARM	DEMAND REDUCTION	3,521	4,441	5,287	6,049	6,717	7,281	\$162	\$162
IRRIGATION, COLORADO	К	IRRIGATION CONSERVATION - OPERATION CONVEYANCE IMPROVEMENTS	DEMAND REDUCTION	916	2,904	4,791	6,527	8,092	9,364	\$200	\$200
IRRIGATION, COLORADO	К	IRRIGATION CONSERVATION - SPRINKLER	DEMAND REDUCTION	251	1,221	2,362	2,845	2,845	2,845	\$36	\$36
IRRIGATION, COLORADO	К	LCRA - INTERRUPTIBLE WATER FOR AGRICULTURE (LCRA WMP AMENDMENTS)	K HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	25,007	18,363	8,775	4,387	0	0	\$50	N/A
IRRIGATION, MATAGORDA	к	CITY OF AUSTIN RETURN FLOWS	K COLORADO INDIRECT REUSE - CITY OF AUSTIN RETURN FLOWS	8,832	9,326	11,356	13,011	14,876	17,560	\$0	\$0
IRRIGATION, MATAGORDA	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	37,244	36,228	35,238	34,276	33,340	32,429	\$649	\$649
IRRIGATION, MATAGORDA	К	IRRIGATION CONSERVATION - ON FARM	DEMAND REDUCTION	9,947	13,109	16,369	19,741	23,234	26,865	\$162	\$162
IRRIGATION, MATAGORDA	К	IRRIGATION CONSERVATION - OPERATION CONVEYANCE IMPROVEMENTS	DEMAND REDUCTION	2,587	8,572	14,836	21,300	27,986	34,548	\$200	\$200
IRRIGATION, MATAGORDA	К	IRRIGATION CONSERVATION - SPRINKLER	DEMAND REDUCTION	711	3,604	7,316	9,286	9,286	9,286	\$36	\$36
IRRIGATION, MATAGORDA	К	LCRA - INTERRUPTIBLE WATER FOR AGRICULTURE (LCRA WMP AMENDMENTS)	K HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	36,997	23,109	9,221	4,611	0	0	\$50	N/A
IRRIGATION, MILLS	K	DROUGHT MANAGEMENT	DEMAND REDUCTION	125	95	65	36	7	0	\$123	N/A
IRRIGATION, MILLS	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - TRINITY AQUIFER	K TRINITY AQUIFER MILLS COUNTY	480	480	480	480	480	480	\$1619	\$1619
IRRIGATION, WHARTON	К	CITY OF AUSTIN RETURN FLOWS	K COLORADO INDIRECT REUSE - CITY OF AUSTIN RETURN FLOWS	6,361	6,494	7,216	7,546	7,546	8,484	\$0	\$0
IRRIGATION, WHARTON	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	27,855	27,106	26,376	25,666	24,976	24,305	\$260	\$260
IRRIGATION, WHARTON	К	IRRIGATION CONSERVATION - ON FARM	DEMAND REDUCTION	6,533	8,450	10,343	12,211	14,049	15,853	\$162	\$162
IRRIGATION, WHARTON	К	IRRIGATION CONSERVATION - OPERATION CONVEYANCE IMPROVEMENTS	DEMAND REDUCTION	1,698	5,525	9,374	13,175	16,922	20,388	\$200	\$200
IRRIGATION, WHARTON	К	IRRIGATION CONSERVATION - SPRINKLER	DEMAND REDUCTION	467	2,323	4,622	5,743	5,743	5,743	\$36	\$36
IRRIGATION, WHARTON	К	LCRA - INTERRUPTIBLE WATER FOR AGRICULTURE (LCRA WMP AMENDMENTS)	K HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	15,876	7,192	1,452	726	0	0	\$50	N/A
IRRIGATION, WHARTON	Р	IRRIGATION CONSERVATION - ON FARM	DEMAND REDUCTION	41,338	41,338	41,338	41,338	41,338	41,338	\$76	\$76
IRRIGATION, WHARTON	Р	IRRIGATION CONSERVATION - TAILWATER RECOVERY	DEMAND REDUCTION	8,429	8,429	8,429	8,429	8,429	8,429	\$423	\$423

		Water Management Strategy Supplies									
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
IRRIGATION, WHARTON	Р	LOCAL OFF-CHANNEL RESERVOIR - WHARTON COUNTY (LANE CITY)	K COLORADO RUN- OF-RIVER	12,000	12,000	12,000	12,000	12,000	12,000	\$33	\$33
JOHNSON CITY	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	71	82	89	92	95	96	\$50	\$50
JOHNSON CITY	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - ELLENBURGER-SAN SABA AQUIFER	K ELLENBURGER- SAN SABA AQUIFER BLANCO COUNTY	175	175	175	175	175	175	\$800	\$800
JOHNSON CITY	К	MUNICIPAL CONSERVATION - JOHNSON CITY	DEMAND REDUCTION	18	30	30	28	26	26	\$378	\$378
JONESTOWN	к	DROUGHT MANAGEMENT	DEMAND REDUCTION	82	86	90	95	99	104	\$50	\$50
JONESTOWN	К	MUNICIPAL CONSERVATION - JONESTOWN	DEMAND REDUCTION	20	36	51	73	96	122	\$356	\$356
KINGSLAND WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	47	54	53	50	56	60	\$50	\$50
LA GRANGE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	130	144	153	161	168	174	\$50	\$50
LA GRANGE	К	MUNICIPAL CONSERVATION - LA GRANGE	DEMAND REDUCTION	42	21	0	0	0	0	\$396	N/A
LAGO VISTA	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	374	437	498	566	628	686	\$50	\$50
LAGO VISTA	К	MUNICIPAL CONSERVATION - LAGO VISTA	DEMAND REDUCTION	187	301	426	604	773	972	\$291	\$291
LAKEWAY	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	1,395	1,823	1,819	1,816	1,815	1,815	\$50	\$50
LAKEWAY	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - TRINITY AQUIFER	K TRINITY AQUIFER TRAVIS COUNTY	500	500	500	500	500	500	\$570	\$570
LAKEWAY	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	1,000	1,000	1,000	1,000	1,000	1,000	\$0	\$0
LAKEWAY	К	MUNICIPAL CONSERVATION - LAKEWAY	DEMAND REDUCTION	702	1,652	2,408	3,052	3,640	3,921	\$272	\$272
LLANO	к	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - HICKORY AQUIFER	K HICKORY AQUIFER LLANO COUNTY	200	200	200	200	200	200	\$1270	\$1270
LLANO	К	DIRECT REUSE - LLANO	K DIRECT REUSE	100	100	100	100	100	100	\$660	\$660
LLANO	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	129	134	132	128	133	137	\$50	\$50
LLANO	К	MUNICIPAL CONSERVATION - LLANO	DEMAND REDUCTION	88	118	143	169	209	252	\$291	\$291
LOOP 360 WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	176	183	190	197	204	211	\$50	\$50
LOOP 360 WSC	К	MUNICIPAL CONSERVATION - LOOP 360 WSC	DEMAND REDUCTION	116	224	333	441	546	648	\$258	\$258
LOST CREEK MUD	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	218	214	211	211	211	211	\$50	\$50
LOST CREEK MUD	К	MUNICIPAL CONSERVATION - LOST CREEK MUD	DEMAND REDUCTION	108	137	171	215	254	294	\$291	\$291
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	CITY OF AUSTIN RETURN FLOWS	K COLORADO INDIRECT REUSE - CITY OF AUSTIN RETURN FLOWS	20,594	18,530	19,919	19,519	19,999	22,526	\$0	\$0
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	CITY OF PFLUGERVILLE - DOWNSTREAM RETURN FLOWS	K COLORADO INDIRECT REUSE - DOWNSTREAM RETURN FLOWS	5,086	5,834	6,784	8,636	8,997	10,453	\$0	\$0
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - ACQUIRE ADDITIONAL WATER RIGHTS	K COLORADO RUN- OF-RIVER	250	250	250	250	250	250	\$500	\$0
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	К	LCRA - EXCESS FLOWS RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	15,257	15,543	15,830	16,117	16,404	16,691	\$1446	\$1446
MANOR	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	171	234	294	362	422	477	\$50	\$50
MANOR	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - TRINITY AQUIFER	K TRINITY AQUIFER TRAVIS COUNTY	0	600	600	600	600	600	N/A	\$545

		Water Management Strategy Supplies									
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
MANUFACTURING, BASTROP	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	55	87	120	151	174	199	\$995	\$995
MANUFACTURING, FAYETTE	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - GULF COAST AQUIFER	K GULF COAST AQUIFER FAYETTE COUNTY	391	391	391	391	391	391	\$547	\$547
MANUFACTURING, GILLESPIE	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - ELLENBURGER-SAN SABA AQUIFER	K ELLENBURGER- SAN SABA AQUIFER GILLESPIE COUNTY	626	626	626	626	626	626	\$594	\$594
MANVILLE WSC	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	448	541	630	733	825	911	\$50	\$50
MANVILLE WSC	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - TRINITY AQUIFER	K TRINITY AQUIFER TRAVIS COUNTY	0	0	0	1,000	1,000	1,000	N/A	\$537
MANVILLE WSC	К	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	0	0	500	2,000	2,000	N/A	\$151
MARBLE FALLS	К	DIRECT REUSE - MARBLE FALLS	K DIRECT REUSE	11	11	11	11	11	11	\$0	\$0
MARBLE FALLS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	466	674	968	1,122	1,225	1,277	\$50	\$50
MARBLE FALLS	К	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	500	4,000	4,000	4,000	4,000	4,000	\$1517	\$1517
MARBLE FALLS	К	MUNICIPAL CONSERVATION - MARBLE FALLS	DEMAND REDUCTION	234	587	1,016	1,397	1,764	2,059	\$286	\$286
MEADOWLAKES	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	170	204	233	261	286	308	\$50	\$50
MEADOWLAKES	К	MUNICIPAL CONSERVATION - MEADOWLAKES	DEMAND REDUCTION	84	188	309	443	573	708	\$271	\$271
MINING, BASTROP	К	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - CARRIZO-WILCOX AQUIFER	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	0	0	466	466	466	466	N/A	\$689
MINING, BASTROP	к	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - QUEEN CITY AQUIFER	K QUEEN CITY AQUIFER BASTROP COUNTY	110	306	0	0	0	0	\$755	N/A
MINING, BURNET	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - ELLENBURGER-SAN SABA AQUIFER	K ELLENBURGER- SAN SABA AQUIFER BURNET COUNTY	1,500	1,500	1,500	1,500	1,500	1,500	\$950	\$950
MINING, BURNET	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - HICKORY AQUIFER	K HICKORY AQUIFER BURNET COUNTY	0	500	1,000	1,800	1,800	1,800	N/A	\$718
MINING, BURNET	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - MARBLE FALLS AQUIFER	K MARBLE FALLS AQUIFER BURNET COUNTY	0	0	0	0	1,000	1,500	N/A	\$469
MINING, FAYETTE	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - GULF COAST AQUIFER	K GULF COAST AQUIFER FAYETTE COUNTY	1,920	1,520	1,061	618	344	344	\$388	\$622
MINING, FAYETTE	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - SPARTA AQUIFER	K SPARTA AQUIFER FAYETTE COUNTY	66	42	13	0	0	0	\$1030	N/A
MINING, HAYS	К	DIRECT REUSE - BUDA	K DIRECT REUSE	0	0	500	500	500	500	N/A	\$0
MINING, HAYS	К	EDWARDS / MIDDLE TRINITY ASR	K TRINITY AQUIFER ASR HAYS COUNTY	0	100	100	100	100	100	N/A	\$1291
MINING, HAYS	к	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - TRINITY AQUIFER	K TRINITY AQUIFER HAYS COUNTY	531	761	1,047	1,047	1,047	1,047	\$436	\$436
MOUNTAIN CITY	К	EDWARDS / MIDDLE TRINITY ASR	K TRINITY AQUIFER ASR HAYS COUNTY	0	44	44	44	44	44	N/A	\$1291
MOUNTAIN CITY	L	DROUGHT MANAGEMENT - MOUNTAIN CITY	DEMAND REDUCTION	1	0	0	0	0	0	\$14	N/A
MOUNTAIN CITY	L	LOCAL TRINITY AQUIFER DEVELOPMENT	K TRINITY AQUIFER HAYS COUNTY	60	60	60	60	60	60	\$1300	\$1300
MOUNTAIN CITY	L	MUNICIPAL WATER CONSERVATION (RURAL)	DEMAND REDUCTION	0	0	0	0	0	1	N/A	\$770
NORTH AUSTIN MUD #1	к	DROUGHT MANAGEMENT	DEMAND REDUCTION	128	124	121	118	118	118	\$50	\$50
NORTHTOWN MUD	K	DROUGHT MANAGEMENT	DEMAND REDUCTION	104	120	135	152	167	180	\$50	\$50

Recommended Water User Group (WUG) Water Management Strategies (WMS) Water Management Strategy Supplies

				•		nagemer	ii Sii aleş	sy Suppn	es		
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
PALACIOS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	102	104	104	105	107	108	\$50	\$50
PFLUGERVILLE	К	DIRECT REUSE - PFLUGERVILLE	K DIRECT REUSE	500	1,000	2,000	2,000	4,000	4,000	\$228	\$228
PFLUGERVILLE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	3,194	4,276	5,311	6,474	7,503	8,463	\$50	\$50
PFLUGERVILLE	К	EXPANSION OF CURRENT GROUNDWATER SUPPLIES - EDWARDS-BFZ AQUIFER	K EDWARDS-BFZ AQUIFER TRAVIS COUNTY	0	0	1,000	1,000	1,000	1,000	N/A	\$371
PFLUGERVILLE	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	0	0	3,000	3,000	4,000	N/A	\$151
PFLUGERVILLE	К	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	0	0	0	0	2,000	N/A	\$151
PFLUGERVILLE	К	MUNICIPAL CONSERVATION - PFLUGERVILLE	DEMAND REDUCTION	604	2,105	2,625	3,029	3,514	3,966	\$295	\$295
POINT VENTURE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	52	66	80	96	109	122	\$50	\$50
POINT VENTURE	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	100	100	300	300	300	N/A	\$151
POINT VENTURE	к	MUNICIPAL CONSERVATION - POINT VENTURE	DEMAND REDUCTION	34	82	139	191	241	301	\$282	\$282
ROLLINGWOOD	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	58	57	56	56	56	57	\$50	\$50
ROLLINGWOOD	к	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	400	400	400	400	400	N/A	\$151
ROLLINGWOOD	к	MUNICIPAL CONSERVATION - ROLLINGWOOD	DEMAND REDUCTION	38	67	79	91	104	118	\$286	\$286
SAN SABA	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	228	236	235	230	235	240	\$50	\$50
SAN SABA	к	MUNICIPAL CONSERVATION - SAN SABA	DEMAND REDUCTION	114	211	302	377	463	510	\$275	\$275
SCHULENBURG	к	DROUGHT MANAGEMENT	DEMAND REDUCTION	110	123	132	139	146	150	\$50	\$50
SCHULENBURG	К	MUNICIPAL CONSERVATION - SCHULENBURG	DEMAND REDUCTION	37	63	96	141	188	232	\$343	\$343
SHADY HOLLOW MUD	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	117	114	111	110	110	110	\$50	\$50
SHADY HOLLOW MUD	к	MUNICIPAL CONSERVATION - SHADY HOLLOW MUD	DEMAND REDUCTION	38	16	0	0	0	0	\$397	N/A
SMITHVILLE	К	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - QUEEN CITY AQUIFER	K QUEEN CITY AQUIFER BASTROP COUNTY	0	0	0	0	0	150	N/A	\$1607
SMITHVILLE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	126	161	208	273	362	480	\$50	\$50
SMITHVILLE	К	MUNICIPAL CONSERVATION - SMITHVILLE	DEMAND REDUCTION	44	72	76	88	117	155	\$376	\$376
STEAM ELECTRIC POWER, BASTROP	К	LCRA - EXPAND USE OF GROUNDWATER (CARRIZO- WILCOX AQUIFER)	K CARRIZO-WILCOX AQUIFER BASTROP COUNTY	300	300	300	300	300	300	\$1517	\$1517
STEAM ELECTRIC POWER, FAYETTE	к	CITY OF AUSTIN - LAKE LONG ENHANCED STORAGE	K LAKE LONG/RESERVOIR	2,000	2,000	2,000	2,000	2,000	2,000	\$187	\$187
STEAM ELECTRIC POWER, FAYETTE	К	LCRA - GROUNDWATER SUPPLY FOR FPP (OFF-SITE)	K CARRIZO-WILCOX AQUIFER FAYETTE COUNTY	500	500	500	500	500	500	\$1113	\$1113
STEAM ELECTRIC POWER, FAYETTE	К	LCRA - GROUNDWATER SUPPLY FOR FPP (OFF-SITE)	K YEGUA-JACKSON AQUIFER FAYETTE COUNTY	2,000	2,000	2,000	2,000	2,000	2,000	\$1113	\$1113
STEAM ELECTRIC POWER, FAYETTE	K	LCRA - GROUNDWATER SUPPLY FOR FPP (ON-SITE)	K GULF COAST AQUIFER FAYETTE COUNTY	700	700	700	700	700	700	\$496	\$496
STEAM ELECTRIC POWER, FAYETTE	К	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	6,000	7,000	9,000	11,000	13,000	15,000	\$151	\$151
STEAM ELECTRIC POWER, MATAGORDA	К	BLEND BRACKISH SURFACE WATER IN STPNOC RESERVOIR	K GULF OF MEXICO SALINE	3,000	3,000	3,000	3,000	3,000	3,000	\$0	\$0

				V	vater Ma	nagemer	t Strateg	gy Suppli	es		
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
STEAM ELECTRIC POWER, MATAGORDA	К	CITY OF AUSTIN RETURN FLOWS	K COLORADO INDIRECT REUSE - CITY OF AUSTIN RETURN FLOWS	770	710	766	763	764	859	\$0	\$0
STEAM ELECTRIC POWER, MATAGORDA	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	22,727	22,727	22,727	22,727	22,727	22,727	\$151	\$151
STEAM ELECTRIC POWER, TRAVIS	к	CITY OF AUSTIN - DIRECT REUSE	K DIRECT REUSE	3,500	7,500	7,500	8,500	9,500	10,500	\$1347	\$1347
STEAM ELECTRIC POWER, TRAVIS	К	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	0	0	0	4,543	11,030	N/A	\$151
STEAM ELECTRIC POWER, WHARTON	К	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - GULF COAST AQUIFER	K GULF COAST AQUIFER WHARTON COUNTY	0	0	0	0	200	200	N/A	\$1035
SUNRISE BEACH VILLAGE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	4	4	4	3	3	3	\$50	\$50
SUNSET VALLEY	К	DEVELOPMENT OF NEW GROUNDWATER SUPPLIES - TRINITY AQUIFER	K TRINITY AQUIFER TRAVIS COUNTY	0	0	200	200	200	200	N/A	\$1035
SUNSET VALLEY	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	116	150	182	218	250	280	\$50	\$50
SUNSET VALLEY	К	EDWARDS / MIDDLE TRINITY ASR	K TRINITY AQUIFER ASR HAYS COUNTY	0	200	200	200	200	200	N/A	\$1291
SUNSET VALLEY	к	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	715	715	715	715	715	N/A	\$151
SUNSET VALLEY	К	MUNICIPAL CONSERVATION - SUNSET VALLEY	DEMAND REDUCTION	38	90	158	241	305	366	\$276	\$276
THE HILLS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	217	217	216	216	216	216	\$50	\$50
THE HILLS	К	MUNICIPAL CONSERVATION - THE HILLS	DEMAND REDUCTION	144	272	386	487	581	665	\$263	\$263
TRAVIS COUNTY MUD #4	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	522	602	677	762	837	907	\$50	\$50
TRAVIS COUNTY MUD #4	К	MUNICIPAL CONSERVATION - TRAVIS COUNTY MUD #4	DEMAND REDUCTION	262	564	912	1,302	1,705	2,114	\$251	\$251
TRAVIS COUNTY WCID #10	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	532	607	679	761	835	905	\$50	\$50
TRAVIS COUNTY WCID #10	К	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	3,000	3,000	3,000	3,000	3,000	N/A	\$151
TRAVIS COUNTY WCID #10	К	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #10	DEMAND REDUCTION	213	445	707	996	1,316	1,533	\$275	\$275
TRAVIS COUNTY WCID #17	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	1,268	1,508	1,653	1,678	1,722	1,776	\$50	\$50
TRAVIS COUNTY WCID #17	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	1,000	2,000	2,000	2,000	2,000	2,000	\$151	\$151
TRAVIS COUNTY WCID #17	К	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #17	DEMAND REDUCTION	853	1,825	2,399	2,889	3,325	4,645	\$289	\$289
TRAVIS COUNTY WCID #18	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	168	190	211	236	259	280	\$50	\$50
TRAVIS COUNTY WCID #18	к	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #18	DEMAND REDUCTION	60	95	87	87	96	104	\$375	\$375
TRAVIS COUNTY WCID #19	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	100	99	99	99	99	99	\$50	\$50
TRAVIS COUNTY WCID #19	К	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #19	DEMAND REDUCTION	50	92	131	166	199	229	\$255	\$255
TRAVIS COUNTY WCID #20	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	118	117	117	117	116	116	\$50	\$50
TRAVIS COUNTY WCID #20	К	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #20	DEMAND REDUCTION	59	110	153	197	234	268	\$261	\$261
VOLENTE	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	4	4	5	6	7	7	\$50	\$50
VOLENTE	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	142	142	142	142	142	142	\$7644	\$7644
WEIMAR	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	83	85	87	90	92	96	\$50	\$50

	water Management Strategy Supplies										
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
WEIMAR	К	MUNICIPAL CONSERVATION - WEIMAR	DEMAND REDUCTION	56	74	90	117	144	171	\$290	\$290
WELLS BRANCH MUD	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	88	86	85	84	84	84	\$50	\$50
WEST LAKE HILLS	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	313	310	308	307	306	306	\$50	\$50
WEST LAKE HILLS	к	LCRA - MID BASIN RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	1,300	1,300	1,300	1,300	1,300	N/A	\$151
WEST LAKE HILLS	К	MUNICIPAL CONSERVATION - WEST LAKE HILLS	DEMAND REDUCTION	157	286	398	505	609	700	\$267	\$267
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	к	DROUGHT MANAGEMENT	DEMAND REDUCTION	1,292	1,696	2,170	2,757	3,400	4,120	\$50	\$50
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	к	HAYS COUNTY PIPELINE - REGION K RECOMMENDED	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	1,000	1,000	1,000	1,000	1,000	N/A	\$708
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	к	LCRA - LANE CITY RESERVOIR	K LCRA NEW OFF- CHANNEL RESERVOIRS (2020 DECADE)	0	700	2,900	3,400	6,200	6,200	N/A	\$151
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	к	MUNICIPAL CONSERVATION - WEST TRAVIS COUNTY PUA	DEMAND REDUCTION	639	1,575	2,873	4,665	6,874	9,574	\$267	\$267
WHARTON	К	DROUGHT MANAGEMENT	DEMAND REDUCTION	250	259	265	274	283	291	\$50	\$50
WHARTON	К	MUNICIPAL CONSERVATION - WHARTON	DEMAND REDUCTION	168	134	176	171	176	182	\$312	\$312
		T 7 _		520.200	500 275	(40.20)	725.000	790 (91	966 675		
Region K Total RecommendedWMS Supplies 538,369							725,008	/89,681	800,075		

Recommended Water User Group (WUG) Water Management Strategies (WMS) Water Management Strategy Supplies

Project Sponosr Region: K

Sponsor Name	Is Sponsor a WWP?	Project Name	Project Description	Capital Cost	Online Decade
AQUA WSC	N	EXPANSION OF CARRIZO-WILCOX AQUIFER SUPPLIES - AQUA WSC	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$9,777,000	2020
AQUA WSC	N	MUNICIPAL CONSERVATION - AQUA WSC	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$1,384,870	2020
AQUA WSC	N	NEW SURFACE WATER INFRASTRUCTURE - AQUA WSC	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$127,538,000	2040
AUSTIN	Y	CITY OF AUSTIN - AQUIFER STORAGE AND RECOVERY	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; PUMP STATION; WATER TREATMENT PLANT EXPANSION	\$312,316,000	2020
AUSTIN	Y	CITY OF AUSTIN - CAPTURE LOCAL INFLOWS TO LADY BIRD LAKE	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION	\$2,949,000	2020
AUSTIN	Y	CITY OF AUSTIN - DIRECT REUSE	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; WATER TREATMENT PLANT EXPANSION	\$536,176,000	2020
AUSTIN	Y	CITY OF AUSTIN - INDIRECT POTABLE REUSE THROUGH LADY BIRD LAKE	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION	\$41,970,000	2020
AUSTIN	Y	CITY OF AUSTIN - LAKE LONG ENHANCED STORAGE	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$31,041,000	2020
AUSTIN	Y	CITY OF AUSTIN - LONGHORN DAM OPERATIONS IMPROVEMENTS	WATER LOSS CONTROL	\$1,036,000	2020
AUSTIN	Y	CITY OF AUSTIN - OTHER REUSE	CONVEYANCE/TRANSMISSION PIPELINE; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$21,772,000	2020
AUSTIN	Y	CITY OF AUSTIN - RAINWATER HARVESTING	MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); STORAGE TANK	\$690,167,000	2020
AUSTIN	Y	CITY OF AUSTIN CONSERVATION	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$41,434,437	2020
BARTON CREEK WEST WSC	N	MUNICIPAL CONSERVATION - BARTON CREEK WEST WSC	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$38,391	2020
BASTROP	Ν	DEVELOPMENT OF NEW CARRIZO-WILCOX AQUIFER SUPPLIES - BASTROP	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,976,000	2020
BASTROP	Ν	DIRECT REUSE - BASTROP	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$4,625,000	2040
BASTROP	N	MUNICIPAL CONSERVATION - BASTROP	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$224,866	2020
BASTROP	Ν	NEW SURFACE WATER INFRASTRUCTURE - BASTROP	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER TREATMENT PLANT; PUMP STATION	\$34,858,000	2050
BASTROP COUNTY WCID #2	Ν	EXPANSION OF CARRIZO-WILCOX AQUIFER SUPPLIES - BASTROP COUNTY WCID #2	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,150,000	2060
BAY CITY	N	MUNICIPAL CONSERVATION - BAY CITY	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$405,403	2020
BEE CAVE	N	MUNICIPAL CONSERVATION - BEE CAVE VILLAGE	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$137,097	2020
BERTRAM	N	BUENA VISTA REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; STORAGE TANK; WATER TREATMENT PLANT EXPANSION	\$4,523,170	2020
BERTRAM	Ν	EXPANSION OF ELLENBURGER-SAN SABA AQUIFER SUPPLIES - BERTRAM	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,031,000	2020

Sponsor Name	Is Sponsor a WWP?	Project Name	Project Description	Capital Cost	Online Decade
BERTRAM	N	MUNICIPAL CONSERVATION - BERTRAM	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$41,421	2020
BLANCO	N	MUNICIPAL CONSERVATION - BLANCO	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$47,867	2020
BUDA	N	BS/EACD EDWARDS / MIDDLE TRINITY ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$6,818,182	2030
BUDA	N	BS/EACD SALINE EDWARDS ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$7,500,000	2030
BUDA	N	DIRECT REUSE - BUDA	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$6,075,000	2020
BUDA	N	MUNICIPAL CONSERVATION - BUDA	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$221,686	2020
BURNET	N	BUENA VISTA REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; STORAGE TANK; WATER TREATMENT PLANT EXPANSION	\$10,233,415	2020
BURNET	N	MUNICIPAL CONSERVATION - BURNET	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$184,386	2020
CEDAR PARK	Y	MUNICIPAL CONSERVATION - CEDAR PARK	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$238,695	2020
COLUMBUS	N	MUNICIPAL CONSERVATION - COLUMBUS	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$100,974	2020
COTTONWOOD SHORES	Ν	MARBLE FALLS REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER IREATMENT PLANT; PUMP STATION; STORAGE TANK	\$6,099,086	2020
COTTONWOOD SHORES	N	MUNICIPAL CONSERVATION - COTTONWOOD SHORES	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$30,672	2020
COUNTY-OTHER, BASTROP	N	EXPANSION OF CARRIZO-WILCOX AQUIFER SUPPLIES - BASTROP COUNTY-OTHER	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,150,000	2020
COUNTY-OTHER, BASTROP	N	MUNICIPAL CONSERVATION - BASTROP COUNTY OTHER	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$232,736	2020
COUNTY-OTHER, BLANCO	N	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, BLANCO	N	EXPANSION OF ELLENBURGER-SAN SABA AQUIFER SUPPLIES - BLANCO COUNTY-OTHER	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$821,000	2050
COUNTY-OTHER, BLANCO	N	EXPANSION OF HICKORY AQUIFER SUPPLIES - BLANCO COUNTY-OTHER	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$1,316,000	2050
COUNTY-OTHER, BURNET	N	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, BURNET	N	BUENA VISTA REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; STORAGE TANK; WATER TREATMENT PLANT EXPANSION	\$10,233,415	2020
COUNTY-OTHER, BURNET	N	EAST LAKE BUCHANAN REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER IREATMENT PLANT; PUMP STATION; STORAGE TANK	\$10,337,000	2020
COUNTY-OTHER, BURNET	N	MARBLE FALLS REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER IREATMENT PLANT; PUMP STATION; STORAGE TANK	\$7,649,996	2020

Sponsor Name	Is Sponsor a WWP?	Project Name	Project Description	Capital Cost	Online Decade
COUNTY-OTHER, BURNET	N	MUNICIPAL CONSERVATION - BURNET COUNTY- OTHER	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$164,771	2020
COUNTY-OTHER, COLORADO	N	EXPANSION OF GULF COAST AQUIFER SUPPLIES - COLORADO COUNTY-OTHER	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$1,466,000	2020
COUNTY-OTHER, FAYETTE	N	EXPANSION OF GULF COAST AQUIFER SUPPLIES - FAYETTE COUNTY-OTHER	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$4,558,000	2020
COUNTY-OTHER, GILLESPIE	N	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, HAYS	N	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, HAYS	N	BS/EACD EDWARDS / MIDDLE TRINITY ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$2,272,727	2030
COUNTY-OTHER, HAYS	N	BS/EACD SALINE EDWARDS ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$3,000,000	2030
COUNTY-OTHER, HAYS	N	HAYS COUNTY PIPELINE - REGION K PORTION	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$11,739,500	2030
COUNTY-OTHER, LLANO	Ν	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, MILLS	Ν	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, SAN SABA	N	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
COUNTY-OTHER, TRAVIS	N	BRUSH CONTROL	BRUSH CONTROL CAPITAL COST	\$2,137,000	2020
CREEDMOOR-MAHA WSC	N	BS/EACD SALINE EDWARDS ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$4,500,000	2030
DRIPPING SPRINGS	N	MUNICIPAL CONSERVATION - DRIPPING SPRINGS	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$49,510	2020
DRIPPING SPRINGS WSC	N	HAYS COUNTY PIPELINE - REGION K PORTION	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$5,869,750	2030
DRIPPING SPRINGS WSC	N	MUNICIPAL CONSERVATION - DRIPPING SPRINGS WSC	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$68,043	2020
EAST BERNARD	N	MUNICIPAL CONSERVATION - EAST BERNARD	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$52,607	2020
ELGIN	N	EXPANSION OF CARRIZO-WILCOX AQUIFER SUPPLIES - ELGIN	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,150,000	2020
ELGIN	N	NEW SURFACE WATER INFRASTRUCTURE - ELGIN	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER IREATMENT PLANT; PUMP STATION; STORAGE TANK	\$61,623,000	2030
FLATONIA	N	DIRECT REUSE - FLATONIA	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$1,226,000	2020
FLATONIA	N	EXPANSION OF GULF COAST AQUIFER SUPPLIES - FLATONIA	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,241,000	2020
FLATONIA	N	MUNICIPAL CONSERVATION - FLATONIA	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$37,553	2020
FREDERICKSBURG	N	MUNICIPAL CONSERVATION - FREDERICKSBURG	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$291,489	2020
GOLDTHWAITE	N	MUNICIPAL CONSERVATION - GOLDTHWAITE	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$41,809	2020

Sponsor Name	Is Sponsor a WWP?	Project Name	Project Description	Capital Cost	Online Decade
HORSESHOE BAY	N	MUNICIPAL CONSERVATION - HORSESHOE BAY	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$154,204	2020
IRRIGATION, COLORADO	N	IRRIGATION CONSERVATION - ON FARM	ON FARM IRRIGATION CONSERVATION	\$14,210,709	2020
IRRIGATION, COLORADO	N	IRRIGATION CONSERVATION - SPRINKLER	ON FARM IRRIGATION CONSERVATION	\$1,234,855	2020
IRRIGATION, COLORADO	N	IRRIGATION OPERATIONS CONVEYANCE IMPROVEMENTS	CANAL LINING; ON FARM IRRIGATION CONSERVATION	\$22,581,627	2020
IRRIGATION, MATAGORDA	N	IRRIGATION CONSERVATION - ON FARM	ON FARM IRRIGATION CONSERVATION	\$52,428,108	2020
IRRIGATION, MATAGORDA	N	IRRIGATION CONSERVATION - SPRINKLER	ON FARM IRRIGATION CONSERVATION	\$4,030,116	2020
IRRIGATION, MATAGORDA	N	IRRIGATION OPERATIONS CONVEYANCE IMPROVEMENTS	CANAL LINING; ON FARM IRRIGATION CONSERVATION	\$83,311,250	2020
IRRIGATION, MILLS	N	EXPANSION OF TRINITY AQUIFER SUPPLIES - MILLS COUNTY IRRIGATION	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$8,289,000	2020
IRRIGATION, WHARTON	N	IRRIGATION CONSERVATION - ON FARM	ON FARM IRRIGATION CONSERVATION	\$30,939,183	2020
IRRIGATION, WHARTON	N	IRRIGATION CONSERVATION - SPRINKLER	ON FARM IRRIGATION CONSERVATION	\$2,492,779	2020
IRRIGATION, WHARTON	N	IRRIGATION OPERATIONS CONVEYANCE IMPROVEMENTS	CANAL LINING; ON FARM IRRIGATION CONSERVATION	\$49,164,123	2020
JOHNSON CITY	N	EXPANSION OF ELLENBURGER-SAN SABA AQUIFER SUPPLIES - JOHNSON CITY	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$1,505,000	2020
JOHNSON CITY	N	MUNICIPAL CONSERVATION - JOHNSON CITY	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$45,790	2020
JONESTOWN	N	MUNICIPAL CONSERVATION - JONESTOWN	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$46,456	2020
LA GRANGE	N	MUNICIPAL CONSERVATION - LA GRANGE	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$117,647	2020
LAGO VISTA	N	MUNICIPAL CONSERVATION - LAGO VISTA	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$187,406	2020
LAKEWAY	N	EXPANSION OF TRINITY AQUIFER SUPPLIES - LAKEWAY	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,985,000	2020
LAKEWAY	N	MUNICIPAL CONSERVATION - LAKEWAY	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$544,773	2020
LLANO	N	DEVELOPMENT OF NEW HICKORY AQUIFER SUPPLIES - LLANO	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,743,000	2020
LLANO	Ν	DIRECT REUSE - LLANO	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$689,000	2020
LLANO	N	MUNICIPAL CONSERVATION - LLANO	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$87,599	2020
LOOP 360 WSC	N	MUNICIPAL CONSERVATION - LOOP 360	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$71,683	2020
LOST CREEK MUD	N	MUNICIPAL CONSERVATION - LOST CREEK MUD	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$108,519	2020
LOWER COLORADO RIVER AUTHORITY	Y	EXPANSION OF CARRIZO-WILCOX AQUIFER SUPPLIES - LCRA	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; PUMP STATION; STORAGE TANK	\$4,564,000	2020
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - ACQUIRE ADDITIONAL WATER RIGHTS	WATER RIGHT/PERMIT LEASE OR PURCHASE	\$125,000	2020

Sponsor Name	Is Sponsor a	Project Name	Project Description	Capital Cost	Online Decade
LOWER COLORADO RIVER AUTHORITY	WWP? Y	LCRA - ENHANCED MUNICIPAL AND INDUSTRIAL CONSERVATION	MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT	\$64,099,000	2020
LOWER COLORADO	Y	LCRA - EXCESS FLOWS PERMIT OFF-CHANNEL	OR WATER LOSS); WATER LOSS CONTROL CONVEYANCE/TRANSMISSION PIPELINE; NEW SUBFACE WATER INTAKE: PLIMP STATION:	\$298,000,000	2020
LOWER COLORADO	Y	LCRA - GROUNDWATER SUPPLY FOR FPP (OFF-	CONVEYANCE/TRANSMISSION PIPELINE;	\$20,107,000	2020
RIVER AUTHORITY	V	SITE)	MULTIPLE WELLS/WELL FIELD; PUMP STATION; STORAGE TANK	\$2,740,000	2020
RIVER AUTHORITY	Y	LCRA - GROUNDWATER SUPPLY FOR FPP (ON- SITE)	MULTIPLE WELLS/WELL FIELD; PUMP STATION	\$2,749,000	2020
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - LANE CITY OFF-CHANNEL RESERVOIR	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; RESERVOIR CONSTRUCTION	\$218,593,000	2017
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - MID-BASIN OFF-CHANNEL RESERVOIR	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; RESERVOIR CONSTRUCTION	\$298,000,000	2020
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - PRAIRIE SITE OFF-CHANNEL RESERVOIR	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; RESERVOIR CONSTRUCTION	\$376,000,000	2030
MANOR	Ν	EXPANSION OF TRINITY AQUIFER SUPPLIES - MANOR	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$3,442,000	2030
MANUFACTURING, BASTROP	Ν	EXPANSION OF CARRIZO-WILCOX AQUIFER SUPPLIES - BASTROP COUNTY MANUFACTURING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,150,000	2020
MANUFACTURING, FAYETTE	N	EXPANSION OF GULF COAST AQUIFER SUPPLIES - FAYETTE COUNTY MANUFACTURING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,279,000	2020
MANUFACTURING, GILLESPIE	N	EXPANSION OF ELLENBURGER-SAN SABA AQUIFER SUPPLIES - GILLESPIE COUNTY MANUFACTURING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$3,880,000	2020
MANVILLE WSC	N	EXPANSION OF TRINITY AQUIFER SUPPLIES - MANVILLE WSC	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$5,431,000	2050
MARBLE FALLS	N	MARBLE FALLS REGIONAL PROJECT	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; NEW WATER IREATMENT PLANT; PUMP STATION; STORAGE TANK	\$34,851,918	2020
MARBLE FALLS	N	MUNICIPAL CONSERVATION - MARBLE FALLS	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$221,276	2020
MEADOWLAKES	N	MUNICIPAL CONSERVATION - MEADOWLAKES	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$64,541	2020
MINING, BASTROP	Ν	DEVELOPMENT OF NEW CARRIZO-WILCOX AQUIFER SUPPLIES - BASTROP COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$3,391,000	2040
MINING, BASTROP	Ν	DEVELOPMENT OF NEW QUEEN CITY AQUIFER SUPPLIES - BASTROP COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,446,000	2020
MINING, BURNET	N	EXPANSION OF ELLENBURGER-SAN SABA AQUIFER SUPPLIES - BURNET COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$13,418,000	2020
MINING, BURNET	Ν	EXPANSION OF HICKORY AQUIFER SUPPLIES - BURNET COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$13,437,000	2030
MINING, BURNET	Ν	EXPANSION OF MARBLE FALLS AQUIFER SUPPLIES - BURNET COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$7,257,000	2060
MINING, FAYETTE	Ν	EXPANSION OF GULF COAST AQUIFER SUPPLIES - FAYETTE COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$7,520,000	2020
MINING, FAYETTE	Ν	EXPANSION OF SPARTA AQUIFER SUPPLIES - FAYETTE COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$753,000	2020
MINING, HAYS	N	BS/EACD EDWARDS / MIDDLE TRINITY ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$1,136,364	2030
MINING, HAYS	N	EXPANSION OF TRINITY AQUIFER SUPPLIES - HAYS COUNTY MINING	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$4,652,000	2020
MOUNTAIN CITY	N	BS/EACD EDWARDS / MIDDLE TRINITY ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$500,000	2030
PFLUGERVILLE	N	DIRECT REUSE - PFLUGERVILLE	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION; STORAGE TANK	\$7,959,000	2020

Sponsor Name	Is Sponsor a WWP?	Project Name	Name Project Description		Online Decade
PFLUGERVILLE	N	EXPANSION OF EDWARDS (BFZ) AQUIFER SUPPLIES - PFLUGERVILLE	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$3,729,000	2040
PFLUGERVILLE	N	MUNICIPAL CONSERVATION - PFLUGERVILLE	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$1,701,900	2020
POINT VENTURE	N	MUNICIPAL CONSERVATION - POINT VENTURE	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$31,028	2020
ROLLINGWOOD	N	MUNICIPAL CONSERVATION - ROLLINGWOOD	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$36,238	2020
ROUND ROCK	Y	MUNICIPAL CONSERVATION - ROUND ROCK	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$36,147	2020
SAN SABA	N	MUNICIPAL CONSERVATION - SAN SABA	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$91,823	2020
SCHULENBURG	N	MUNICIPAL CONSERVATION - SCHULENBURG	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$78,947	2020
SHADY HOLLOW MUD	N	MUNICIPAL CONSERVATION - SHADY HOLLOW MUD	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$106,952	2020
SMITHVILLE	Ν	DEVELOPMENT OF NEW QUEEN CITY AQUIFER SUPPLIES - SMITHVILLE	CONVEYANCE/TRANSMISSION PIPELINE; SINGLE WELL	\$2,620,000	2070
SMITHVILLE	N	MUNICIPAL CONSERVATION - SMITHVILLE	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$109,412	2020
STEAM ELECTRIC POWER, MATAGORDA	Ν	ALTERNATE CANAL DELIVERY - STPNOC	CONVEYANCE/TRANSMISSION PIPELINE	\$7,669,000	2020
STEAM ELECTRIC POWER, WHARTON	Ν	DEVELOPMENT OF NEW GULF COAST AQUIFER SUPPLIES - WHARTON COUNTY STEAM-ELECTRIC	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,237,000	2060
SUNSET VALLEY	N	BS/EACD EDWARDS / MIDDLE TRINITY ASR	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION	\$2,272,727	2030
SUNSET VALLEY	N	DEVELOPMENT OF NEW TRINITY AQUIFER SUPPLIES - SUNSET VALLEY	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD	\$2,228,000	2040
SUNSET VALLEY	N	MUNICIPAL CONSERVATION - SUNSET VALLEY	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$31,520	2020
THE HILLS	N	MUNICIPAL CONSERVATION - THE HILLS	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$97,374	2020
TRAVIS COUNTY MUD #4	N	MUNICIPAL CONSERVATION - TRAVIS COUNTY MUD #4	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$137,248	2020
FRAVIS COUNTY WCID #10	N	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #10	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$171,890	2020
FRAVIS COUNTY WCID #17	N	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #17	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$828,248	2020
FRAVIS COUNTY WCID #18	N	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #18	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$147,665	2020

Sponsor Name	Is Sponsor a WWP?	Project Name	Project Description	Capital Cost	Online Decade
FRAVIS COUNTY WCID #19	N	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #19 WCID #10 WCID #10		\$28,215	2020
FRAVIS COUNTY WCID #20	N	MUNICIPAL CONSERVATION - TRAVIS COUNTY WCID #20 WCID #20		\$38,290	2020
VOLENTE	N	NEW SURFACE WATER INFRASTRUCTURE - VOLENTE REATMENT PLANT; PUMP STATION; STORAGE TANK		\$8,263,000	2020
WEIMAR	N	MUNICIPAL CONSERVATION - WEIMAR CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL		\$55,778	2020
WEST LAKE HILLS	N	MUNICIPAL CONSERVATION - WEST LAKE HILLS	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$112,784	2020
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	N	HAYS COUNTY PIPELINE - REGION K PORTION	CONVEYANCE/TRANSMISSION PIPELINE; PUMP STATION	\$5,869,750	2030
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	N	MUNICIPAL CONSERVATION - WEST TRAVIS COUNTY PUA COUNTY PUA CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL		\$461,454	2020
WHARTON	N	MUNICIPAL CONSERVATION - WHARTON	METER REPLACEMENT; MUNICIPAL CONSERVATION CAPITAL COST (DOES NOT INCLUDE METER REPLACEMENT OR WATER LOSS); WATER LOSS CONTROL	\$210,832	2020
	\$3,77	72,705,672			

*Projects with a capital cost of zero are excluded from the report list.

THIS PAGE LEFT BLANK INTENTIONALLY

Alternative Water User Group (WUG) Water Management Strategies (WMS)

WUG Entity Primary Region: K

		Water Management Strategy Supplies									
WUG Entity Name	WMS Sponsor Region	WMS Name	Source Name	2020	2030	2040	2050	2060	2070	Unit Cost 2020	Unit Cost 2070
AUSTIN	к	CITY OF AUSTIN - BRACKISH GROUNDWATER DESALINATION	K EDWARDS-BFZ AQUIFER TRAVIS COUNTY	0	5,000	5,000	5,000	5,000	5,000	N/A	\$1523
AUSTIN	к	CITY OF AUSTIN - RECLAIMED WATER BANK INFILTRATION TO COLORADO ALLUVIUM	K OTHER AQUIFER TRAVIS COUNTY	0	15,000	20,000	25,000	30,000	30,000	N/A	\$424
BUDA	К	DIRECT POTABLE REUSE	K DIRECT REUSE (POTABLE)	2,240	2,240	2,240	2,240	2,240	2,240	\$1440	\$1440
BUDA	к	HCPUA PIPELINE - REGION K ALTERNATIVE	L CARRIZO-WILCOX AQUIFER GONZALES COUNTY	0	667	1,690	2,974	4,033	4,426	N/A	\$1664
IRRIGATION, WHARTON	Р	EXPAND USE OF GROUNDWATER	P GULF COAST AQUIFER WHARTON COUNTY	50,285	50,285	50,285	50,285	50,285	50,285	\$44	\$44
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - AQUIFER STORAGE AND RECOVERY	K CARRIZO-WILCOX AQUIFER ASR BASTROP COUNTY	0	0	5,048	5,048	5,048	5,048	N/A	\$1076
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - BAYLOR CREEK RESERVOIR	K BAYLOR CREEK RESERVOIR	0	0	18,000	18,000	18,000	18,000	N/A	\$900
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - BRACKISH GROUNDWATER DESALINATION	K GULF COAST AQUIFER MATAGORDA COUNTY	0	0	22,400	22,400	22,400	22,400	N/A	\$1035
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - ENHANCED RECHARGE AND CONJUNCTIVE USE	K GULF COAST AQUIFER WHARTON COUNTY	10,000	10,000	10,000	10,000	10,000	10,000	\$834	\$834
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - GROUNDWATER IMPORTATION	G CARRIZO-WILCOX AQUIFER BURLESON COUNTY	0	0	35,000	35,000	35,000	35,000	N/A	\$1470
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - IMPORT RETURN FLOWS FROM WILLIAMSON COUNTY	G BRAZOS RUN-OF- RIVER	25,000	25,000	25,000	25,000	25,000	25,000	\$219	\$219
LOWER COLORADO RIVER AUTHORITY - UNASSIGNED WATER VOLUMES	к	LCRA - SUPPLEMENT BAY AND ESTUARY INFLOWS WITH BRACKISH GROUNDWATER	K GULF COAST AQUIFER MATAGORDA COUNTY	12,000	12,000	12,000	12,000	12,000	12,000	\$500	\$500
Bagion K Total Alternative WMS Sunnlies			99,525	120,192	206,663	212,947	219,006	219,399			
Kegion IX Total Anerhauve wivis Supplies			,020			,, /	,000	,,			

THIS PAGE LEFT BLANK INTENTIONALLY
Alternative Projects Associated with Water Management Strategies

Project Sponsor Region: K

Sponsor Name	Is Sponsor a	Project Name	Project Description	Capital Cost	Online Decade
	WWP?				Decude
AUSTIN	Y	CITY OF AUSTIN - BRACKISH GROUNDWATER DESALINATION	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; STORAGE TANK	\$54,582,000	2030
AUSTIN	Y	CITY OF AUSTIN - RECLAIMED WATER BANK INFILTRATION TO COLORADO ALLUVIUM	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; PUMP STATION; RESERVOIR CONSTRUCTION	\$151,846,000	2030
BUDA	N	DIRECT POTABLE REUSE	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$26,779,000	2020
HAYS CALDWELL PUA	Y	HAYS/CALDWELL PUA PROJECT - ALTERNATIVE	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; NEW WATER IREATMENT PLANT; PUMP STATION; STORAGE TANK	\$51,128,546	2030
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - AQUIFER STORAGE AND RECOVERY	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$39,590,000	2040
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - BAYLOR CREEK RESERVOIR	CONVEYANCE/TRANSMISSION PIPELINE; NEW SURFACE WATER INTAKE; PUMP STATION; RESERVOIR CONSTRUCTION	\$179,000,000	2040
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - BRACKISH GROUNDWATER DESALINATION	CONVEYANCE/TRANSMISSION PIPELINE; INJECTION WELL; MULTIPLE WELLS/WELL FIELD; NEW WATER TREATMENT PLANT; PUMP STATION; STORAGE TANK	\$277,006,000	2040
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - ENHANCED RECHARGE AND CONJUNCTIVE USE	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; NEW SURFACE WATER INTAKE; PUMP STATION; RESERVOIR CONSTRUCTION	\$53,504,000	2020
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - GROUNDWATER IMPORTATION	CONVEYANCE/TRANSMISSION PIPELINE; MULTIPLE WELLS/WELL FIELD; PUMP STATION	\$614,790,000	2040
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - IMPORT RETURN FLOWS FROM WILLIAMSON COUNTY	CONVEYANCE/TRANSMISSION PIPELINE; NEW WATER RIGHT/PERMIT; PUMP STATION; STORAGE TANK; WATER TREATMENT PLANT EXPANSION	\$54,193,000	2020
LOWER COLORADO RIVER AUTHORITY	Y	LCRA - SUPPLEMENT BAY AND ESTUARY INFLOWS WITH BRACKISH GROUNDWATER	CONVEYANCE/TRANSMISSION PIPELINE; DIVERSION AND CONTROL STRUCTURE	\$34,966,000	2020
	\$1,53	37,384,546			

*Projects with a capital cost of zero are excluded from the report list.

THIS PAGE LEFT BLANK INTENTIONALLY

Water User Group (WUG) Management Supply Factor

REGION K	WUG MANAGEMENT SUPPLY FACTOR					
	2020	2030	2040	2050	2060	2070
AQUA WSC	1.3	1.1	1.4	1.1	1.1	1.0
AUSTIN	2.4	2.1	1.9	1.8	1.7	1.6
BARTON CREEK WEST WSC	2.0	2.1	2.2	2.2	2.3	2.3
BASTROP	1.4	1.2	1.1	1.5	1.3	1.1
BASTROP COUNTY WCID #2	3.0	2.2	1.8	1.3	1.4	1.0
BAY CITY	2.0	1.9	1.9	1.8	1.8	1.8
BEE CAVE	1.3	1.3	1.4	1.4	1.4	1.4
BERTRAM	2.8	3.2	2.9	2.7	2.5	2.4
BLANCO	3.5	3.1	2.8	2.7	2.7	2.6
BRIARCLIFF	1.6	1.5	1.3	1.2	1.1	1.0
BUDA	2.3	2.3	1.9	1.6	1.3	1.1
BURNET	3.4	3.3	3.0	2.8	2.6	2.5
CIMARRON PARK WATER COMPANY	1.0	1.0	1.1	1.1	1.1	1.1
COLUMBUS	1.3	1.3	1.4	1.4	1.4	1.4
COTTONWOOD SHORES	4.1	4.7	4.2	3.8	3.5	3.3
COUNTY-OTHER, BASTROP	1.1	1.1	1.0	1.0	1.0	1.0
COUNTY-OTHER, BLANCO	2.3	2.0	1.9	1.9	1.9	1.8
COUNTY-OTHER, BURNET	2.9	3.1	3.2	3.0	2.8	2.5
COUNTY-OTHER, COLORADO	1.7	1.7	1.7	1.6	1.6	1.5
COUNTY-OTHER, FAYETTE	1.5	1.4	1.3	1.2	1.2	1.2
COUNTY-OTHER, GILLESPIE	1.7	1.6	1.6	1.5	1.5	1.4
COUNTY-OTHER, HAYS	2.7	2.9	1.9	1.6	1.3	1.2
COUNTY-OTHER, LLANO	7.7	8.5	8.5	8.3	8.8	9.4
COUNTY-OTHER, MATAGORDA	1.4	1.4	1.4	1.4	1.4	1.4
COUNTY-OTHER, MILLS	2.5	2.5	2.5	2.5	2.4	2.3
COUNTY-OTHER, SAN SABA	3.2	3.1	3.2	3.2	3.2	3.1
COUNTY-OTHER, TRAVIS	2.3	2.5	2.7	3.1	4.0	5.7
COUNTY-OTHER, WHARTON	1.7	1.6	1.6	1.5	1.5	1.4
CREEDMOOR-MAHA WSC	1.3	1.9	1.7	1.5	1.4	1.2
DRIPPING SPRINGS	1.4	1.3	1.4	1.4	1.4	1.5
DRIPPING SPRINGS WSC	1.3	2.9	2.5	2.3	2.0	1.7
EAGLE LAKE	1.3	1.2	1.2	1.2	1.2	1.2
EAST BERNARD	1.4	1.4	1.4	1.4	1.4	1.4
ELGIN	1.0	2.6	2.0	1.6	1.3	1.0
FAYETTE WSC	1.6	1.4	1.3	1.3	1.2	1.2
FLATONIA	2.3	2.2	2.1	2.1	2.1	2.1
FREDERICKSBURG	1.5	1.5	1.5	1.4	1.4	1.4
GOLDTHWAITE	1.0	1.0	1.1	1.1	1.1	1.1
GRANITE SHOALS	1.3	1.1	1.0	1.2	1.1	1.0
HORSESHOE BAY	1.4	1.5	1.6	1.6	1.7	1.7
IRRIGATION, BASTROP	1.5	1.6	1.7	1.8	1.9	2.0
IRRIGATION, BLANCO	1.3	1.4	1.4	1.5	1.5	1.6
IRRIGATION, BURNET	1.4	1.4	1.4	1.4	1.4	1.4
IRRIGATION, COLORADO	1.0	1.0	1.0	1.0	1.0	1.1
IRRIGATION, FAYETTE	1.9	2.0	2.2	2.3	2.5	2.6
IRRIGATION, GILLESPIE	1.2	1.2	1.2	1.3	1.3	1.3
IRRIGATION, LLANO	1.2	1.2	1.3	1.3	1.3	1.3
IRRIGATION, MATAGORDA	0.7	0.7	0.7	0.8	0.8	0.9
IRRIGATION, MILLS	1.3	1.3	1.3	1.3	1.3	1.4
IRRIGATION, SAN SABA	1.1	1.1	1.2	1.2	1.2	1.3

REGION K	WUG MANAGEMENT SUPPLY FACTOR					
	2020	2030	2040	2050	2060	2070
IRRIGATION, TRAVIS	1.2	1.3	1.4	1.5	1.7	1.8
IRRIGATION, WHARTON	0.9	0.9	0.9	1.0	1.0	1.0
JOHNSON CITY	1.6	1.4	1.4	1.3	1.3	1.3
JONESTOWN	1.0	1.0	1.0	1.0	1.0	1.0
KINGSLAND WSC	1.3	1.2	1.2	1.2	1.1	1.1
LA GRANGE	1.7	1.5	1.4	1.4	1.3	1.3
LAGO VISTA	2.5	2.2	2.0	1.8	1.7	1.7
LAKEWAY	1.3	1.2	1.2	1.3	1.4	1.4
LIVESTOCK, BASTROP	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, BLANCO	1.1	1.1	1.1	1.1	1.1	1.1
LIVESTOCK, BURNET	1.4	1.4	1.4	1.4	1.4	1.4
LIVESTOCK, COLORADO	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, FAYETTE	1.4	1.4	1.4	1.4	1.4	1.4
LIVESTOCK, GILLESPIE	1.5	1.5	1.5	1.5	1.5	1.5
LIVESTOCK, LLANO	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, MATAGORDA	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, MILLS	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, SAN SABA	1.0	1.0	1.0	1.0	1.0	1.0
LIVESTOCK, TRAVIS	1.0	1.0	1.0	1.0	1.0	1.0
LLANO	1.1	1.1	1.1	1.2	1.2	1.2
LOOP 360 WSC	1.3	1.4	1.4	1.4	1.5	1.5
LOST CREEK MUD	1.3	1.3	1.4	1.4	1.4	1.5
MANOR	3.2	2.0	1.6	1.4	1.2	1.1
MANUFACTURING, BASTROP	1.0	1.0	1.0	1.0	1.0	1.0
MANUFACTURING, BLANCO	1.0	1.0	1.0	1.0	1.0	1.0
MANUFACTURING, BURNET	1.8	1.6	1.5	1.3	1.2	1.1
MANUFACTURING, COLORADO	2.2	2.1	1.9	1.9	1.7	1.6
MANUFACTURING, FAYETTE	1.5	1.4	1.3	1.2	1.1	1.0
MANUFACTURING, GILLESPIE	1.3	1.2	1.2	1.1	1.1	1.0
MANUFACTURING, HAYS	2.8	2.4	2.2	2.0	1.8	1.7
MANUFACTURING, LLANO	1.0	1.0	1.0	1.0	1.0	1.0
MANUFACTURING, MATAGORDA	1.3	1.2	1.2	1.1	1.1	1.0
MANUFACTURING, MILLS	1.0	1.0	1.0	1.0	1.0	1.0
MANUFACTURING, SAN SABA	1.0	1.0	1.0	1.0	1.0	1.0
MANUFACTURING, TRAVIS	1.0	1.0	1.0	1.0	1.0	1.0
MANUFACTURING, WHARTON	1.4	1.4	1.3	1.2	1.1	1.0
MANVILLE WSC	2.3	1.5	1.3	1.3	1.3	1.2
MARBLE FALLS	2.1	2.7	2.0	1.8	1.8	1.7
MEADOWLAKES	1.1	1.0	1.0	1.0	1.0	1.1
MINING, BASTROP	0.8	0.4	0.3	0.3	0.3	0.3
MINING, BLANCO	1.0	1.0	1.0	1.0	1.0	1.0
MINING, BURNET	1.1	1.1	1.0	1.0	1.1	1.0
MINING, COLORADO	1.1	1.1	1.0	1.0	1.0	1.0
MINING, FAYETTE	1.0	1.0	1.1	1.3	2.5	2.5
MINING, GILLESPIE	13.8	13.8	13.8	13.8	13.8	13.8
MINING, HAYS	1.0	1.1	1.4	1.4	1.2	1.0
MINING, LLANO	1.0	1.0	1.0	1.0	1.0	1.0
MINING, MATAGORDA	1.0	1.0	1.3	1.8	2.9	4.5
MINING, MILLS	1.0	1.0	1.0	1.0	1.0	1.0
MINING, SAN SABA	1.4	1.4	1.6	1.7	1.8	1.8

REGION K	WUG MANAGEMENT SUPPLY FACTOR					
	2020	2030	2040	2050	2060	2070
MINING, TRAVIS	1.0	1.0	1.0	1.0	1.0	1.0
MINING, WHARTON	1.0	1.0	1.3	1.8	2.8	4.4
MOUNTAIN CITY	1.8	2.2	2.1	1.9	1.7	1.5
NORTH AUSTIN MUD #1	1.1	1.1	1.2	1.1	1.2	1.2
NORTHTOWN MUD	1.6	1.6	1.5	1.5	1.5	1.4
PALACIOS	1.7	1.7	1.7	1.7	1.6	1.6
PFLUGERVILLE	1.3	1.1	1.1	1.1	1.0	1.0
POINT VENTURE	1.3	1.4	1.3	1.5	1.4	1.3
ROLLINGWOOD	1.3	1.4	1.4	1.5	1.5	1.5
SAN SABA	1.2	1.3	1.4	1.4	1.5	1.5
SCHULENBURG	1.2	1.1	1.1	1.1	1.1	1.1
SHADY HOLLOW MUD	1.2	1.2	1.1	1.2	1.2	1.2
SMITHVILLE	2.4	2.1	1.9	1.6	1.2	1.0
STEAM ELECTRIC POWER, BASTROP	1.2	1.0	1.0	1.0	1.0	1.0
STEAM ELECTRIC POWER, FAYETTE	1.6	1.6	1.6	1.4	1.3	1.2
STEAM ELECTRIC POWER, LLANO	1.0	1.0	1.0	1.0	1.0	1.0
STEAM ELECTRIC POWER, MATAGORDA	1.0	1.0	1.0	1.0	1.0	1.0
STEAM ELECTRIC POWER, TRAVIS	1.3	1.3	1.3	1.1	1.0	1.0
STEAM ELECTRIC POWER, WHARTON	1.1	1.1	1.0	1.0	1.0	1.0
SUNRISE BEACH VILLAGE	3.7	3.8	3.9	4.0	4.0	4.0
SUNSET VALLEY	1.5	3.4	3.4	3.2	3.0	2.9
THE HILLS	1.3	1.4	1.5	1.6	1.6	1.7
TRAVIS COUNTY MUD #4	1.8	1.7	1.6	1.5	1.5	1.5
TRAVIS COUNTY WCID #10	1.4	1.7	1.6	1.6	1.5	1.5
TRAVIS COUNTY WCID #17	1.3	1.3	1.3	1.3	1.3	1.4
TRAVIS COUNTY WCID #18	1.7	1.6	1.4	1.3	1.2	1.1
TRAVIS COUNTY WCID #19	1.3	1.4	1.5	1.5	1.6	1.7
TRAVIS COUNTY WCID #20	2.2	2.3	2.4	2.5	2.6	2.6
VOLENTE	2.9	2.5	2.2	1.9	1.7	1.6
WEIMAR	1.4	1.4	1.4	1.4	1.4	1.4
WELLS BRANCH MUD	1.1	1.1	1.1	1.1	1.1	1.1
WEST LAKE HILLS	1.3	1.2	1.3	1.4	1.4	1.5
WEST TRAVIS COUNTY PUBLIC UTILITY AGENCY	1.5	1.5	1.5	1.4	1.5	1.4
WHARTON	1.7	1.6	1.6	1.5	1.5	1.5

Water User Group (WUG) Management Supply Factor

*WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. To calculate the Management Supply Factor for each WUG as a whole, <u>not split</u> by region-county-basin the combined total of existing and future supply is divided by the total projected demand.

THIS PAGE LEFT BLANK INTENTIONALLY